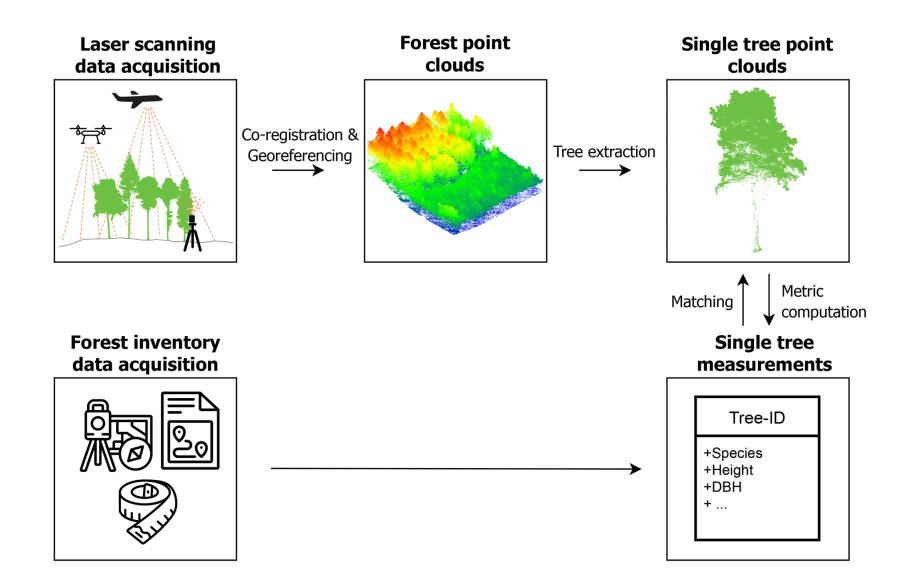
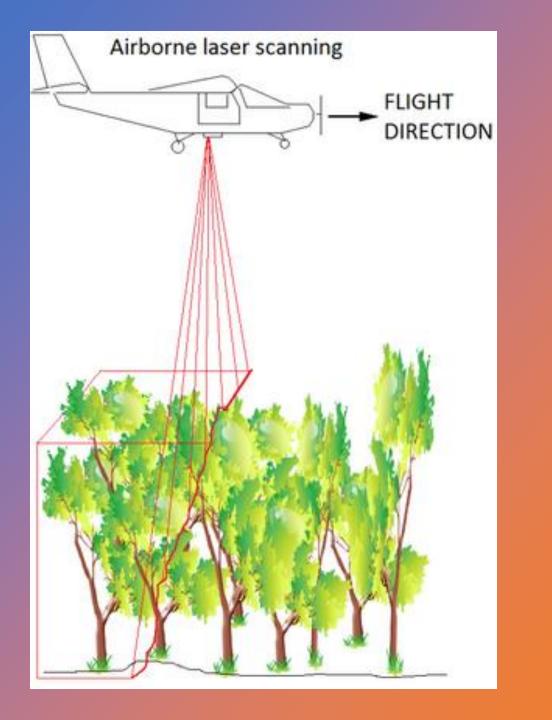

Overview of data collection methods for forest management

Daud Jones Kachamba African Forest Forum <u>d.Kachamba@cifor-icraf.org</u>

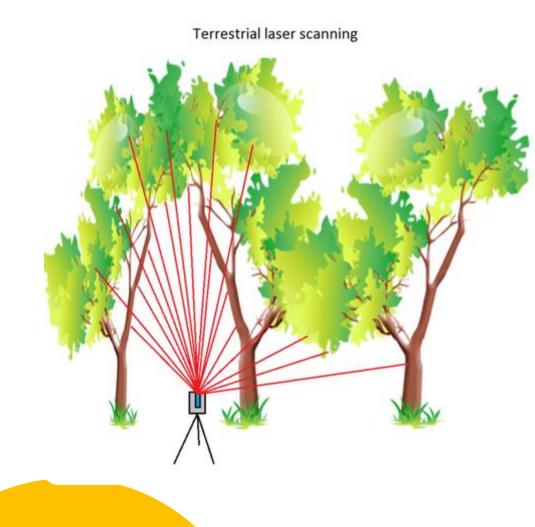

Keddy Mbindo <u>Forest Dept Zambia</u> WhatsApp: +260977225119 Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au


Background

- The first step in a National Forest Inventory (NFI) involves developing a national land cover map displaying different forest strata across the country.
- Next, ground-based sample plot inventories are conducted on permanent sample plots distributed across the country.
- Allometric models are then applied to estimate average biomass and carbon stocks for sample plots lying within a given stratum.
- National level carbon stock is then estimated by applying the average biomass and carbon density values across the map with the same forest strata.

Background

- However, comprehensive ground-based inventories are associated with high labor and operational costs hence restrictive to most developing countries
- This has prompted researchers to search for other reliable, precise but more cost-effective biomass estimation methodologies.
- A promising approach aimed at reducing labor and operational costs, as well as improving the reliability of estimated biomass in NFIs, involve combining data from ground-based forest inventories and remote sensing



Sources of remotely sensed data

- For forestry applications, remotely sensed data are mainly sourced from three main systems, namely,
 - Airborne Laser scanning (ALS)
 - Terrestrial Laser Scanner (TLS)
 - Radio detection and ranging (RADAR) (e.g., synthetic aperture radar (SAR))
 - Optical images (e.g., satellite- or aerial images from drones).

Remote sensing has been widely applied in forestry for several decades in most countries, although with **various degrees of success** due to differences in data types, forest canopy cover, geographical and environmental conditions and methods used

- Data from ALS systems have shown great potential for forest biomass estimations in different forest types including boreal, temperate and tropical forests.
- However, wide application of ALS data for large-scale forest biomass estimation has been limited due to high data acquisition costs.
- Integration of ALS and TLS data for estimation of tree AGB at a single-tree level has been investigated.

Open Foris (web-based)

Next generation forest management: High detail information from laser scanning

Sep 3, 2015 | Research and releases

Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au

Lidar Scanning for Forest Management in African

ARBOR

META.

Presented by forest mapping and measurement specialist, ArborMeta.

What is LiDAR Scanning?

LiDAR scanning involves the use of a laser instrument that scans a physical scene, detecting objects and creating a '3D digital replica' of that scene

Types of LiDAR

Terrestrial LiDAR (TLS)

- Carried by field staff
- Used to collect field plot data
- Ground-truth

Advantages over conventional methods

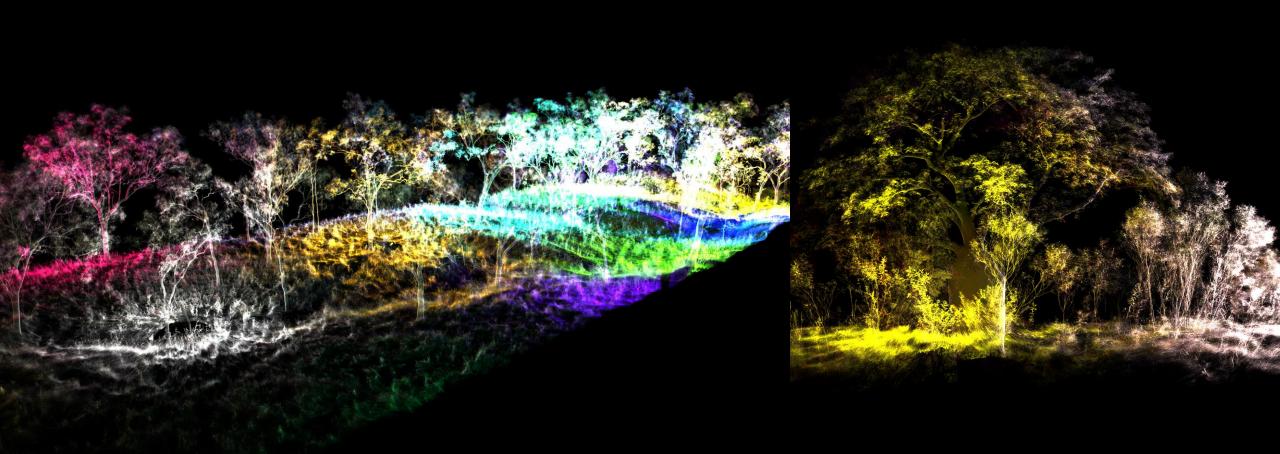
- Greater accuracy
- Faster surveys
- Great reliability
- Less labour
- More value for money
- Digital format
- Data richness

Aerial LiDAR (ALS)

Lucien McKaige lucien@arbormeta.au

WhatsApp: +61 466 342 112 www.arbormeta.au

- Collected using a drone or aircraft
- Used to collect broad scale data (requires calibration by TLS)

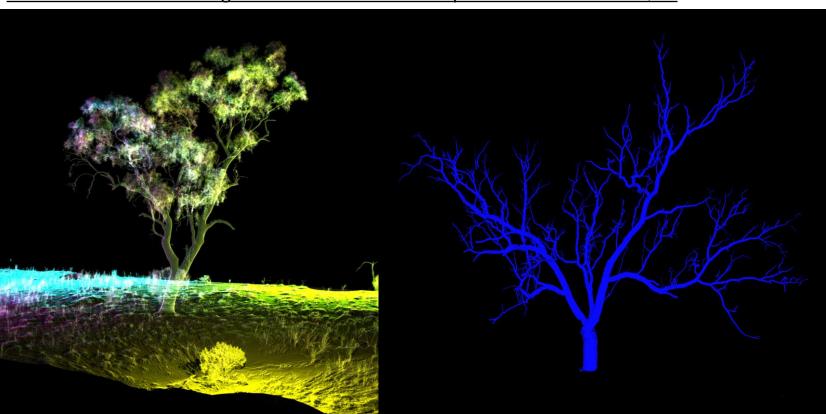


Terrestrial LiDAR Data Outputs

Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au

Each plot captured by Terrestrial LiDAR Scanning (TLS) can be viewed and analysed as a 'point-cloud'. Each point-cloud perfectly captures the exact detail of each plot and can be viewed and assessed on a computer.

Terrestrial LiDAR Scanning: Savanna Woodland point-cloud and Boab tree point-cloud (Northern Territory, Australia)



Terrestrial LiDAR Data Outputs

Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au

Each TLS plot's point-cloud is used to generate cylinder models of all trees present, allowing for quantitative metrics to be measured.

Terrestrial LiDAR Scanning: Savanna Woodland tree point-cloud and tree QSM

Quantitative metrics include:

For every tree above 5cm:

- Woody volume
- Diameter at Breast Height (DBH)
- Tree height
- Basal area
- Canopy area
- Biomass (tdm)
- Carbon stock (tCO2e-)
- Species Identification

Plot level metrics:

- Carbon stock per hectare
- Canopy cover area per hectare
- Tree count
- Litter
- Deadwood % per hectare

Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au

TLS Instrument, Operations, and Processing

Details

TLS Instrument (Riegl VZ-400i)

- Instrument weight = 11kg
- Inbuilt GNSS receiver
- No base station needed
- No gradient error
- Point accuracy = ~2 mm
- Battery life = 5 hours
- Setup time = 5 minutes
- Scan accuracy independent of canopy density
- Other consumables = tripod, navigation phone, GPS receiver for phone.

Riegl VZ-600i

- Faster scanning
- Lighter
- More expensive
- Durability untested

Operations

- No. technicians required to conduct scan
 = 1
- For <u>woodland</u> = Use external GPS for plot navigation
- For <u>rainforest</u> = use manual compass and flagging for plot navigation
- 1-hectare plot woodland = 45 minutes scan time

Processing

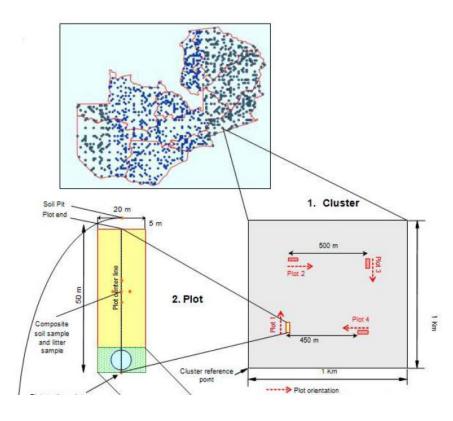
- Specialised processing software required (open-source and/or proprietary)
- Requires multiple servers and highcapacity computer equipment
- Software engineers and trained data processors required.
- 1 hectare woodland plot processing time
 - Labour = 1-2 hours (1 person)

Q: Do you need Aerial LiDAR?

A: Aerial LiDAR can be used to build a biomass map across a broad area, reducing number the ground field plots needed. This is the 'model-assisted' approach, known as Multi-Scale LiDAR Biomass Mapping

Q: Does LiDAR account for different carbon in tree species?

A: ArborMeta has developed a tree-identification tool to ascribe species to trees so specific wood density factors may be used. AI species identification is in development.



National Forest Inventory

EXAMPLE: Zambia NFI

Sampling Design

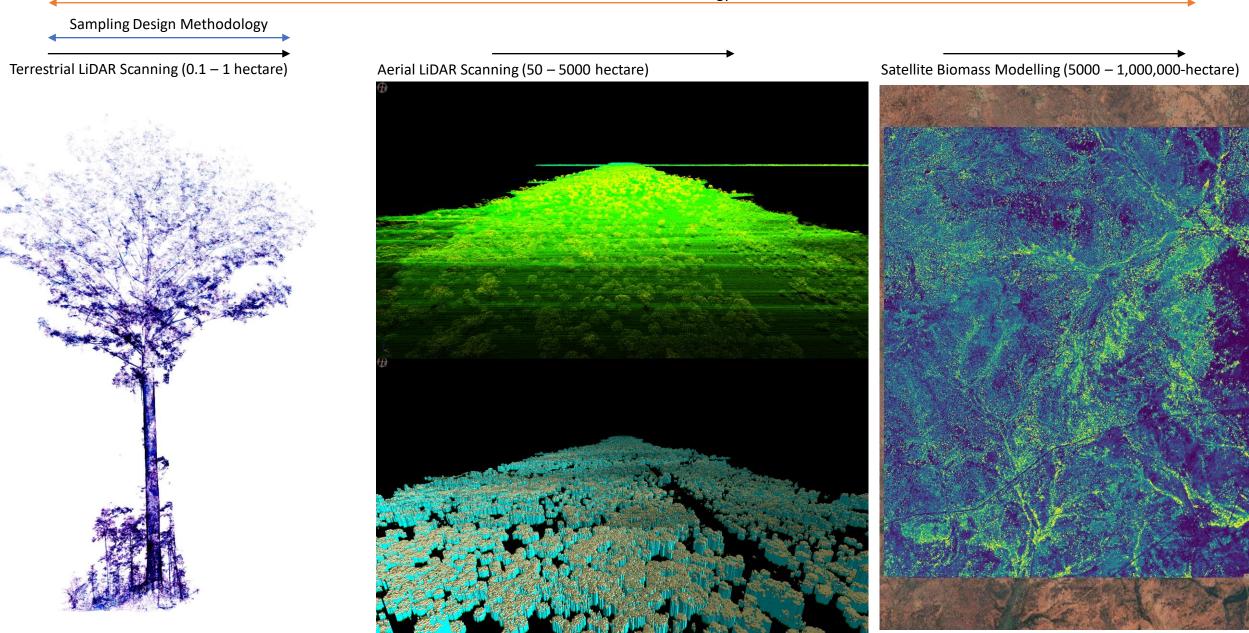
Dominant vegetation: Miombo woodland Plot clusters: 986 (4 plots per cluster) Plot size = 0.1 hectares

Zambia NFI plot collection using Terrestrial LiDAR

Lucien McKaige lucien@arbormeta.au

WhatsApp: +61 466 342 112 www.arbormeta.au

- 1 field officer will take ~13 minutes to scan a 20x50 metre plot
- Equals 216 hours of scan time to complete 1000 plots
- Or 36 six-hour workdays


If measuring 1-hectare plots, will take ~125 six-hour workdays to survey 1000 plots

LiDAR Scanning can be used for data collection for the following purposes:

- National Forest Inventory
- National Forest Monitoring System
- Verra REDD+
- Gold Standard Reforestation/Afforestation
- ART Tree's REDD+
- Jurisdictional REDD+

Multi-Scale LiDAR Carbon Mapping

Model-assisted Methodology

LiDAR for African Forestry Management

Lucien McKaige <u>lucien@arbormeta.au</u> WhatsApp: +61 466 342 112 www.arbormeta.au

Working opportunities

Short Term

ArborMeta can deliver

- TLS Field data collection assistance
- Training of field technicians
- Provision of equipment (rent or sale)
- Data processing and analysis
- Forest plot data (all relevant outputs)

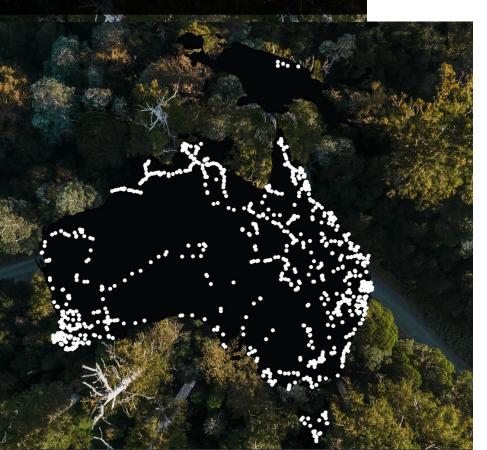
Long term

ArborMeta can deliver

- Provision of equipment (rent or sale)
- Data processing and analysis
- Forest plot data (all relevant outputs)
- General assistance

As the technology and software matures, forestry departments may eventually perform data collection and processing in-house.

In the interim period, ArborMeta offers their pioneering expertise and infrastructure for data processing and delivery.


2,750+

A DECEMBER OF THE OWNER OF

Hectares Surveyed with Terrestrial LiDAR

53mil+

Individual Trees Surveyed with Aerial LiDAR

ArborMeta's Progress

- ArborMeta has comprehensively scanned the rainforests and rangelands of Australia
 - We are now working with the FAO in neighbouring jurisdictions to provide Terrestrial LiDAR data collection services for the National forest Inventory

