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ARTICLE

Land use land cover change and the comparative impact of
co-management and government-management on the forest
cover in Malawi (1999-2018)
Monica Fides Gondwe a,b, Moses Azong Choa,b, Paxie Wanangwa Chirwaa

and Coert Johannes Geldenhuysa

aDepartment of Plant and Soil Sciences, University of Pretoria, Plant Sciences Complex, Pretoria, South Africa; bEarth
Observation group, Natural Resources, and Environment, Council for Scientific and Industrial Research (CSIR),
Pretoria, South Africa

ABSTRACT
Miombo Woodland is the major Land use/land cover with important eco-
logical functions in Africa. In Malawi, government-management was
designed to manage Woodlands. However, when illegal activities contin-
ued, Participatory Forest Management (co-management) in forest reserves
was institutionalised for woodland sustainability. Currently, information on
co-management mitigating deforestation and degradation is scant. This
study assessed woodland/forest through Land use/land cover (LULC) clas-
sification across the country (Malawi); compared forest cover within and
between strategies using 11 co-management and 12 government-
management forest reserves across the country between 1999 and 2018.
Overall accuracies were >90%. Woodland net loses 8.4% (4.39–3.39 million
ha) were to Plantation, Grassland and Agriculture transition intensities.
Agriculture net gains 9.6% (1.87–3.00 million ha) were from Grassland,
Settlement and Woodland transitions for the whole Malawi. Forest cover
within co-management and government-management indicated loses.
Sustainable management of degraded woodlands, integrated Agriculture
and monitoring is encouraged. Further interpretation of transitions is
recommended.
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1. Introduction

Miombo woodlands in the sub-Sahara African (SSA) eco-region constitute 10% of the vegetation of
Africa’s continent and are highly valued because of their ecological functions (regulatory, provision-
ing, supporting and cultural services), and about 100 million livelihoods benefit (Angelsen et al.,
2014; Chiteculo & Surovy, 2018; Dewees et al., 2010; Kalaba, Quinn, & Dougill, 2013; Mucina &
Rutherford, 2006; Munishi, Temu, & Soka, 2010; Ncube, Anyanwu, & Hausken, 2014; Pullanikkatil,
Mograbi, Palamuleni, Ruhiiga, & Shackleton, 2018; Syampungani et al., 2014). Even though the
woodlands play a significant role in cushioning livelihoods, there have been no studies on
a national scale conducted to provide information on the changes in the Miombo landscape of
Malawi. Human activities play a major role in land use/cover changes (LULCC) worldwide with
naturally occurring causes playing a minor role (Burka, 2008; Shah, Sen, Dar, & Kumar, 2017). The
dynamics in the Miombo landscape could be better explained using Remote Sensing (RS) techniques
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including socio-economic, environmental and policy information. The high demand for land for
agriculture, wood energy, and unsustainable fires lead to LULCC (Lambin &Meyfroidt, 2010; Munthali
et al., 2019; Pullanikkatil et al., 2018; Zalengera et al., 2014; Zulu, 2010). LULCC has been a topical
issue worldwide since the introduction of Remote Sensing (RS) (Altaweel, Alessa, Kliskey, & Bone,
2010; Kennedy et al., 2009) and are not exceptional in the Miombo eco-region (Rudel, 2013). The
interest on LULCC information has been due to the implications that unsustainable changes have on
the environment and socio-economic activities in the short and long term (Aldwaik & Pontius, 2012;
Bi, Luo, Ding, & Liang, 2015; Pullanikkatil et al., 2018; Rudel, 2013; Song, Zhang, An, Wang, & Li, 2013;
UNEP, 2015). These changes can affect the woodland ability to provide ecological functions (Obalum
et al., 2012; Pullanikkatil et al., 2018; UNEP, 2015). In response to the changes, the Government of
Malawi has undertaken a number of policy measures in order to mitigate forest loss and degradation.
For example, Participatory Forest Management (PFM) has been institutionalised to involve commu-
nities and other stakeholders to manage forests/trees/woodlands in all land types. It is assumed that
the co-management (hereafter CM) of forest reserves will improve the sustainability of Miombo
woodlands in the landscape. However, the impact of CM on forest cover and whether the strategy
mitigates forest loss is not known. Currently, no studies have been conducted on a national scale to
provide such information. There are a few studies on LULCC in Malawi, but none covers the entire
country (Munthali et al., 2019; Munthali & Murayama, 2011). Bruna and Kress (2002) and Walz (2011)
have argued that information on LULCC is critical for crafting sustainable development goals and in
reviewing policies for continuous improvement of forest management.

In Malawi, Agriculture is the backbone of its economy and heavily reliant on natural resources as
its capital (Dewees et al., 2010; Munthali et al., 2019). Malawi’s overdependency on rainfall for agro-
production has consequences on environmental degradation (SADC National Vulnerability
Assessment Committee, 2017). About 85% of Malawians live in remote areas and almost 80% depend
on natural capital (Dewees et al., 2010; Jumbe & Angelsen, 2007; Kambewa & Utila, 2008). For
instance, 97% of Malawis’ rural people depend on wood energy (Bandyopadhyay, Shyamsundar, &
Baccini, 2011). Wood energy demand is exacerbated as 2% out of 85% of Malawians and 6% in urban
centres have rationed and expensive electricity (Kambewa & Utila, 2008; Zalengera et al., 2014; Zulu,
2010). Furthermore, the population that increased from 9.8 million (1998) to 17 million (2018) has
resulted in a high demand for land resources for Agriculture and infrastructural development
(Chirwa, Mahamane, & Kowero, 2017; Government of Malawi, 2018; Pullanikkatil et al., 2018). Even
though natural resources are socio-economically important, the overdependency on them has an
implication on LULCC especially on the loss and degradation of woodlands (Jumbe & Angelsen, 2007;
Kambewa & Utila, 2008; Zalengera et al., 2014; Zulu, 2010).

Although some literature exists on LULCC in Malawi regarding the Miombo eco-region (Bone,
Parks, Hudson, Tsirinzeni, & Willcock, 2016; Chavula, Brezonik, & Bauer, 2011), no such study has been
conducted at a national scale. Furthermore, other studies focused on different periods that did not
correspond to changes from government-management to a participatory approach, used different
methods and none used the Inter-Governmental Panel on Climate Change (IPCC) LULC classes in the
classification. These classes are standardised for easy comparison of the changes amongst countries
and was used in this study (Penman et al., 2003). Despite LULCC reports in the Lake Malawi basin
(1982–1995) (though on a small scale) which indicated 90% of the cultivated areas contributed to
changes in natural vegetation, the limitation of this study was that images used were from different
sensors and yielded different values for forest, cultivated areas and Woodland/Savanna/Shrub
(Chavula et al., 2011). Similarly, although, Pullanikkatil et al. (2018), reported that 89% forest loss
was due to an increased Agriculture area in LULCC, the study focused on the Likangala river over
a period of 30 years. In addition, Kappa coefficient which was used for accuracy assessment has been
proved to have errors (Jeon, Olofsson, & Woodcock, 2014; Olofsson, Foody, Stehman, & Woodcock,
2013; Pontius & Millones, 2011). Even though Bone et al. (2016) reported 12,760 km2 (36%) forest loss
from the initial time and 11,161 km2 of newly established forest areas resulting in 5% net loss and
correlated with socio-economic data after 37 years assessment of land-cover changes in Malawi, the
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study did not show the transitions and their intensities neither did the study indicate the magnitude
of the changes from the time the management changed from government-management to parti-
cipatory approach. Analysing intensities assists in understanding the classes that are dormant/active
and helps to systematically identify areas with persistence, swap and net changes (Aldwaik & Pontius,
2012; Gao et al., 2016; Pontius, 2019; Quan, Pontius, & Song, 2019). Furthermore, the study of LULCC
by Munthali et al. (2019) focused in one (1) out of 28 districts in Malawi and the time periods used
(1991, 2001 and 2015), for the information could not be generalised for the country’s developmental
programmes and in managing natural resources in a Miombo landscape.

Forests/trees/woodlands in all land types were under the Forest Departments’ protection
(Mauambeta, Chitedze, Mumba, & Gama, 2010). Prior to PFM (CM), illegal activities continued
and exacerbated forest loss and degradation due to limited financial and human resources in
relation to Structural Adjustment Program (SAP) (Government of Malawi, 2018; Ofori, 2009).
Furthermore, illegal harvesting of woody products escalated due to limited understanding of
democratic principles instituted in 1994 (Pullanikkatil et al., 2018). Therefore, to facilitate the
sustainability of the woodlands, PFM CM was adopted in 1999 to halt and curb deforestation
and forest degradation (Government of Malawi, 2005, 2010; Lambin & Meyfroidt, 2010). Forest
co-management involves a mutually binding agreement between the communities and the
Forest Department (FD) in managing the designated FRs and Government remains accountable
(Ballet, Koffi, & Komena, 2009; Phiri, Chirwa, Watts, & Syampungani, 2012; Senganimalunje,
Chirwa, Babalola, & Graham, 2016). The co-managed forest reserves are divided into blocks
that are shared among communities living in a 5-km buffer from the reserve boundary under
a Block Management Committee supervised by a Local Forest Management Board (LFMB)
(Government of Malawi, 2005; Senganimalunje et al., 2016). A block management plan includes
benefit-sharing mechanisms and is a recognised document for an agreement to be signed
between the Director of Forestry and the communities’ Representative. These documents
legalise communities’ authority to sustainably manage the resources on Forest Departments’
behalf (Government of Malawi, 2005). The Board is responsible for facilitating benefit sharing,
resolving conflicts within and between blocks, synthesising resource use rules which are fed
into the District Forest Bylaws. The community’s incentives are to collect woody and non-
woody products (Government of Malawi, 1996). Communities’ involvement in the implementa-
tion of the management plan is regarded as the main cost. The activities may include enrich-
ment planting in degraded areas, protecting the regeneration from bushfires, harvesting
according to the plan, patrolling, and collecting revenue from sales. However, it is not
established whether such activities are implemented to maintain the forest cover since
a participatory approach was adopted.

On the other hand, the Forest Department’s responsibility is to provide technical advice, expertise,
identify training needs and, collaborate with other partners to fill the training gaps and to fetch markets
for forest-based products from communities. However, these activities are hampered by limited financial
and human resources. There is limited information on whether CM is viable. Even though co-
management agreements are signed, monitoring is rare, often limited and in most cases lacking
(Noss, 1999). Therefore, there is fear as to whether CM could maintain the forest cover and mitigate
deforestation and degradation in Malawi. Alternatively, in government-managed forest reserves (here-
after, GM) is carried out by the Forestry Department staff and the focus is on patrolling and administering
policy and law and has been included in the study for comparison with CM which many studies lack.

Numerous literature worldwide has documented on the successes of CM such as on
regeneration, benefit-sharing and improving livelihoods (Ball, 2011; Chinangwa, Pullin, &
Hockley, 2017; Gobeze, Bekele, Lemenih, & Kassa, 2009; Kobbail, 2010; Nagendra,
Karmacharya, & Karna, 2005). However, the studies did not focus on forest cover. Even though
other studies have reported about CM failures such as the declining forest cover with
increased bush vegetation in some sites (Islam et al., 2019), the results fall short of compar-
ison with GM forest reserves. Similarly, despite the aforesaid successes, other studies have
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reported low community participation and woodland fragmentation due to limited resource
use rules and conflicts amongst users (Liu, Liu, & Wang, 2017; Phiri, Morgenroth, & Xu, 2019;
Senganimalunje et al., 2016; Umar & Vedeld, 2012). Proper devolution processes, participatory
governing principles and policy reviews related to sustainability of woodlands/forests in CM
have been limited (Liu et al., 2017; Senganimalunje et al., 2016). Munthali and Murayama
(2011), showed 1.7% annual forest loss equivalent to 22,000 ha (1990 and 2010); and
projected 3.1% (26,700 ha) loss (2010 and 2030) in Dzalanyama GM FR, the limitation of
the study is that only one FR was involved and no CM FRs were included for comparison.
Furthermore, even though, Lupala, Lusambo, Ngaga, and Makatta (2015), reported increased
forest cover in CM in communal woodlands compared to GM areas, the study did not include
forest cover changes in CM of GM FRs. Currently, there is a limitation to the understanding of
the impact of PFM CM in comparison with GM in maintaining the woodland/forest cover
since no study has been conducted at a national level after 19 years of PFM implementation
to mitigate deforestation and forest degradation in Malawi.

Therefore, the aims of this study were to: (i) assess LULCC for the whole of Malawi from the time
Participatory Forest Management was adopted (1999) to 2018 (period of assessment) and (ii) to
assess the effectiveness of PFM CM in Malawi when compared to the government-management of
forests via the establishment of protected/forest reserves using selected 11 CM and 12 GM forest
reserves.

2. Materials and methods

2.1. Study sites

The first phase of the study involved determining LULCC and the transition intensities for Malawi
between 1999 and 2018 (Figure 1). The second phase involved determining differences in forest
cover within and between 1999 and 2018 for 11 CM and 12 GM forest reserves (Figure 1, Table 1). The
forest reserves cover the northern, central, and southern regions of Malawi. The country is in south-
eastern Africa located between latitudes 9° and 18°S and longitudes 32° and 36°E. Malawi occupies
an area of about 11.80 million ha with an approximated population of 17.56 million (Government of
Malawi, 2018). It borders Mozambique on the east, south, and west, Tanzania to the northeast, and
Zambia to the northwest. It has distinct dry and wet seasons. Malawi is predominantly covered by
Miombo woodland (94%) of genera Brachystegia, Isoberlinia and Julbernadia (Geldenhuys, 2014;
Government of Malawi, 2012; Munishi et al., 2010). It is within SSA Zambezian Miombo eco-region
belonging to the largest contiguous block of vegetation in Africa (Chirwa et al., 2017; Syampungani,
Chirwa, Akinnifesi, Sileshi, & Ajayi, 2009). The specific study sites for assessing the impact of manage-
ment strategies in FRs (CM and GM) are in Figure 1 and Table 1.

Agricultural products are the backbone of the country’s economy and maize is the main staple
food followed by rice along the lake shores and swampy areas. Malawi is among the countries in SSA
with a high population density of 139 people per km2 and has an average of 4.4 people family−1

(Jumbe & Angelsen, 2007; Kambewa & Utila, 2008). Malawi is divided into three regions (northern,
central, and southern). Malawi has public land (government owned), communal/customary land, and
Private/Leasehold land (Government of Malawi, 2010). Due to the ever-increasing population, there
is high demand for land for various uses including land for agriculture (Mngube, Anyona, Abuom,
Matano, & Kapiyo, 2019; Munthali et al., 2019).

The Miombowoodlands in Malawi support the biodiversity of about 6,000 species of flora with high
endemism (Government of Malawi, 2010). The woodlands were gazetted to protect fragile areas, to
serve as water catchment and for biodiversity conservation (Government of Malawi, 2016). Before
independence in 1964, all forest reserves across the country were all coveredwith intact woodland, but
now they are fragmented to patches of grass, crop fields, and settlements (Figure 2).
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2.2. General methodology

The change in forest cover between 1999 (when PFM CM was introduced) and the current period
(2018) was conducted. First, LULC using change detection technique from satellite imagery was
performed across the country to assess change in woodland/forest cover. The change can be as
a result of changes of other land uses such as abandonment of farms or reafforestation programmes,

Figure 1. Map of Malawi in Southern East Africa.

Table 1. Forest reserves under co-management and government-management strategies.

Region Co-managed forest reserves Area (Ha) Year gazetted Govt-managed forest reserves Area (Ha) Year gazetted

Northern Mughese 771 1948 Musisi 7,034 1948
Uzumara 596 1948 Ruvuo 4,792.9 1935
Vinthukutu 1,957 1948 Bunganya 3,470 1927
Perekezi 15,370 1935 Kaning’ina 15,530 1935
Mkuwadzi 1,608 1927 Dwambazi 788,627 –

Kawilwe 661.5 1935
Central Chimaliro 15,205 1926 Dzalanyama 98,827 1922

Dzonze-Mvai 8,292 1924 – – –
Southern Liwonde 27,407 1935 Mangochi 40,853 1924

Mulanje 55,209 1913 Phililongwe 161.29 1924
Mathandwe 26,205 1931 Amalika 370 1959
Masenjere 276 1930 Thambani 4,680 1927

Chiradzulu 774 1924

Source: https://www.protectedplanet.net/ and Forestry Department Headquarters management.
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while the decrease in forest cover commonly occurs through the conversion of woodlands to
Agriculture. The methodology consists of three main parts as below.

● Classification of satellite images for 1999 and 2018 into six IPCC Land Use Land Cover. These
classes are standardised for easy comparison among countries (Penman et al., 2003).

● Change detection was conducted to quantify the change in the LULC types between the two
periods.

● 11 CM and 12 GM forest reserves were subset from 1999 and 2018 and analysed in R software to
assess two assumptions: (i) whether PFM co-managed forest reserves have significant change in
forest cover or have increased in cover from 1999 and 2018 (ii) or whether there would be no
significant change in forest cover between PFM co-management and government-managed
forest reserves.

2.3. Classification of land use land cover

2.3.1. Image acquisition, registration, and pre-processing
The geographical position and imagery data are authentic sources to understand the transitions and
magnitudes of LULCC (Aldwaik & Pontius, 2012; Gao et al., 2016) and can be used to determine the
impact of management on Woodlands (Lupala et al., 2015). Landsat images have traditionally been
used for LULCC analysis (Munthali et al., 2019; Teferi, Bewket, Uhlenbrook, & Wenninger, 2013).
However, when many Landsat scenes are mosaicked and used for LULCC, cross-track illumination
effects often affect the classification results (Dadon, Karnieli, & Ben-Dor, 2010; San & Süzen, 2011). In
this study, Google Earth images have been used because of cross-tract illumination effects which
were experienced in an attempt to use Landsat mosaics of Malawi from the United States Geological
Survey (USGS) downloaded images to conduct LULC classification. Therefore, Google Earth Landsat
mosaics as described below were the next option and were preferred to original Landsat images
from the USGS because they have been corrected from cross-track illumination effect.

In the first phase of classifying LULCC for Malawi, two images were acquired from Google Earth
using the time slider function for 1999 and 2018 as also used by Tilman, Cassman, Matson, Naylor, and
Polasky (2002). The Google Earth images were Landsat mosaics. The images were saved as maximum
resolution (4800 x 2718). To improve the resolution, six scenes were saved for each image. Ground
control points (GCPs) for each of the six scenes were saved for subsequent georeferencing, mosaicking,
trimming (clipping) and producing final maps. Overlaps were allowed between scenes to allow
seamless mosaicking. The GCPs are vital as they increased the accuracy of the global positioning of
the image (Jensen, 2007). The mosaicking was done using the ‘Map’ and ‘georeferenced’ commands in
Environment for Visualising Images (ENVI) version 4.7. A 30m x 30mpixel size and Universal Transverse
Mercator (UTM) andWorld Geodetic System (WGS) 1984 datum, zone 36 southwas ensured. The bands

Figure 2. Google earth pro images in Liwonde (left) (co-management) and Chiradzulu (right) (government-management) forest
reserves (Miombo woodlands) in 2018.
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used (spectral) for 1999 (Landsat 7) and 2018 (Landsat 8) are 1, 2 & 3. TheMalawi shapefile was used for
clipping and enabled quick image processing (Lillesand, Kiefer, & Chipman, 2015).

2.4. Land-use land-cover (LULC) classification

The most commonly used Maximum Likelihood classifier was used to classify the images into the
various IPCC land-cover land-used classes (Bauer, Yuan, & Sawaya, 2004; Kalema, Witkowski, Erasmus,
& Mwavu, 2015; Munthali et al., 2019; Otukei & Blaschke, 2010; Pullanikkatil et al., 2018; Rawat, Biswas,
& Kumar, 2013). The classifier uses the probability of pixels of being an endmember for each class
(Bauer et al., 2004). The IPCC LULC classes (Woodland, Plantation, Agriculture, Grassland, Settlement,
and Wetland) (Table 2) were used in the classification. The forest class was divided into Woodland
and Plantation to purposively evaluate the change in Woodland between 1999 and 2018. The ‘other
land’ class composed of rocks and bare areas had very few pixels and could, therefore, not be
included in the classification by ENVI. The classification was conducted based on experience in
interpreting images visually, knowledge of the country and use of Google Earth Pro imagery (Figure
2). Doubtful points on Google Earth were physically verified on 26–27 June and on 10 July 2017,
using coordinates that were loaded in a hand-held GPSmap 62sc to reduce errors. There were high
within-class variabilities in the spectral signature probability due to the mosaicking of images
acquired at different times. To minimise the impact of within-class variability on the classification,
each LULC was subdivided into sub-classes of similar spectral characteristics. The subclasses were
later merged. The number of pixels per rectangle/polygon for training and validation varied (Table 2).
A randomly stratified sample method was performed to acquire polygons for 1999 and 2018 on
Google Earth Pro images, respectively for validation (Table 2).

Olofsson et al. (2013) have shown that the commonly used error or confusion matrix used in
many studies to assess classification accuracies does not account for an unequal sample size of the
validation dataset and often leads to misleading accuracy figures and estimation areas (extent) of
LULC classes. They have recommended an error-adjusted estimator of the areas by using an error
matrix of estimated area proportions for accuracy assessment and subsequent estimation of the
areas of the LULC classes and their confidence intervals. Therefore, the method by Olofsson et al.
(2013) was applied to conduct accuracy assessment and to estimate the areas of the land-cover
classes. The method mitigates the effect of the unequal number of training and validation samples
on the classification accuracy and predicted the area cover of each class with the unbiased
estimation of the total area. Both 1999 and 2018 images required overall accuracies (OA) of 85%
(Kamusoko & Aniya, 2007). Therefore, the AA last estimators were the user, producer, and OA.
Kappa coefficient was not used as it has been regarded to have errors (Jeon et al., 2014; Olofsson
et al., 2013; Pontius & Millones, 2011). Google Earth Pro and a time slider acted as baseline
information to collect validation data for the 1999 Malawi Image. The imagery data for both
years were collected from similar dates with the same phenotypic characteristics for easy compar-
ison. The visual interpretation of the 1999 Malawi image was also facilitated by using the shapes,
textures, tones, and the pattern of classes.

Table 2. Definitions of IPCC LULC, training, and validation data

2.5. Change detection

Change detection was conducted by comparing the 1999 and 2018 Malawi classified images in ENVI.
A change detection matrix between the two time-points is generated which indicates the extent of
land-cover conversion from one class to the other (Aldwaik & Pontius, 2012; Gao et al., 2016; Pontius,
2019; Pontius et al., 2013; Quan et al., 2019). Thereafter, each class was assessed on how their sizes
and intensities of gross loss and gross gain vary if the distribution of changes in each interval was
uniform across the years (1999 and 2018). Examining the intensities of the transitions, a single class in
relation to other classes were performed to determine the class intensity of transitions in relation to
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gross losses/gains using equations 1 and 2 (Aldwaik & Pontius, 2012; Gao et al., 2016; Pontius, 2019).
The process helps to categorise classes that are not part of the transitions.

The three components, Quantity/Net changes, Exchange and Shift were computed using
PontiusMatrix41 spreadsheet obtained from www.clarku.edu/~rpontius using pixels obtained
from change detection. The computation helps to establish the intensities of the transitions
focusing on gross gain/losses for each class and overall (Pontius, 2019; Pontius et al., 2013).

Class Loss Intensities CLIð Þ ¼ Class Loss=Class size 1999ð Þ � 100% (1)

Class Gain Intensities CGIð Þ ¼ Class Gain=Class size 2018ð Þ � 100% (2)

If the losses or gains of LULC classes are lower than the uniform intensity (change) then the classes
are dormant and if the classes intensities have higher values than the uniform values, then, the
classes are active (Gao et al., 2016).

For the analysis of transition intensities for (Woodland, Plantation, Agriculture, Settlement,
Wetland, and Grassland), for instance, loss intensity of Woodland was derived by dividing area of
Woodland lost to other classes by the size of that class in 2018 then multiplied by 100%. The
Woodland gain intensity is derived as follows: Woodland gain to another class divided by the area of
that class in 1999 multiplied by 100% as explained by Gao et al. (2016). Uniform Loss equals the total
loss of a class to other classes in 2018 divided by the total area of all classes in 2018 multiplied by
100%. Uniform Gain = total gain of a class to other classes in 1999 divided by the total area of all
classes in 1999 multiplied by 100% (Gao et al., 2016).

The areas derived from the adjusted error matrices were slightly varied with those from the
transition matrix (Table 4). However, comparison of the results from these schemes was not the main
purpose of the study.

2.6. Significance test for differences in forest cover within and between management (1999
and 2018)

To understand the comparison of woodland/forest cover in PFM (CM) and GM within and
between strategies; the shapefiles for the forest reserves under CM (11) and GM (12) (Table 2)
were obtained from https://www.protectedplanet.net/and Forestry Department to subset the
forest reserves. Thereafter, Woodland data for 1999 and 2018 from both strategies were
extracted using ENVI. The changes within CM and GM forest reserves (1999 and 2018) were
further analysed in R Studio using Wilcoxon sign rank test which uses before and after scenario
(R Development Core Team, 2018; Rosner, Glynn, & Lee, 2006). Again Kruskal–Wallis rank-sum
test (Kruskal & Wallis, 1952) was used to test significant differences in forest cover between
strategies at p < 0.05 between 1999 and 2018.

3. Results

3.1. Accuracies of land use land cover 1999 and 2018

The overall classification accuracies for entire Malawi images were 93.6% and 97.1% for 1999 and
2018, respectively (Table 3a & 3b). The user and producer accuracies for 1999 and 2018 were above
85% except for the Grassland user accuracy (84.1) in 1999 and for Plantation producer accuracy
(77.2%) (Table 3a & 3b, Appendices A1, A2). The intensity analysis showed that Agriculture gained
more from Settlement (46.2%), then from Grassland 40.9% and Woodland (16.1%).
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3.2. Land uses land-cover changes (gain, loss, persistence)

Table 4 indicates the transition matrix with area (ha), pixels, and % cross-tabulated and
reconstructed from Malawi LULC classification and change detection between 1999 and 2018.
The diagonally bold values show each class persistent to change. The off-diagonally, values
show transitions from target class to other classes. Total values for 2018 are at the bottom of
Table 4. 2018 image values are a combination of gains plus persistency. The far right column
shows 1999 Malawi image total values which are a combination of losses plus persistences as in
Gao et al. (2016) and Pontius (2019). The far end right bottom records the total %, area (ha)
and pixels of map change for the entire country.

Tables 4 & 5 illustrate gain, loss, and persistence with a uniform change of 46.2% and
persistence of 53.8% from Malawi maps (1999 and 2018). Between the period, Woodland
gained 9.3% and lost 17.8% for the entire country accounting for all woodlands in all land
tenurial rights. The swap change is 18.7% which is leveled off with a final net change (loss)
8.4%. Furthermore, Agriculture gained 16.6% and lost 7.1% with a net change (gain) of 9.6%
while 23.7% was swapped. Grassland gain was 8.0% while the loss was 14.5% and resulted in a
net change (loss) of 6.5%. Persistence, gain, and loss in each class (Tables 4, 5, Appendix B) are
graphically shown in Figures 3, 4(a,b).

To further demonstrate class loss in 1999 and gain in 2018 (see Table 6).

3.3. Malawi LULC analysis of change intensities

With reference to the transition matrix (Table 4), intensities of a loss or gain have been
constructed for each class (Table 6). On overall and in reference to the Malawi maps (1999
and 2018), all classes such as Woodland (47.8%), Plantation (79.5%), Agriculture (44.5%),
Settlement (76.7) and Grassland (76.8%) showed high loss intensity except Wetland which
showed low loss intensity (10%) in relation to uniform loss of (46.2%) (Table 6) and were
active. Similarly, the classes with high gain intensities were Plantations (81.2%), Agriculture
(65.4%), Settlement (78.4%), Grassland (64.5%) while Woodland (32.5%) and Wetland (26.8%)
had low gain intensities compared to the uniform gain (46.2%) (Table 6).

Table 3. (a) Land use/land cover classification Malawi adjusted error matrix 1999. (b) Land use/land cover classification Malawi
adjusted error matrix 2018.

Reference pixels

Class
Grassland

(nij) Woodland Agriculture Plantation Settlements Wetland
User

accuracy

Predicted
pixels

Grassland (nij) 0.1573321 0.0236173 0.00689206 0 0 0.001097 83.3
Woodland 0.0056019 0.3634805 0 0.0009908 0 0.001905 97.7
Agriculture 0 0 0.15778491 0 0.000843 0 99.5
Plantation 0 0.0002683 0 0.0143413 0 0 98.2
Settlements 0 0 0.00020987 0. 0.043233 0 99.5
Wetland 0.0009760 0 0.0218916 0 0 0.199534 89.7
Column Total (P.j) 0.1639101 0.3873662 0.1867784 0.0153321 0.044076 0.222402
Producer accuracy 96.0 93.8 84.5 93.5 98.1 98.5

Predicted
pixels

Grassland (nij) 0.1110059 0.0123673 0 0 0.0001499 0 89.9
Woodland 0.000458 0.2870225 0 0 0 0 99.8
Agriculture 0 0.0019988 0.2441927 0 0.0064962 0.0016657 96.0
Plantation 0 0 0 0.0159572 0 0 100
Settlements 0 0.0001995 0.0010229 0 0.0457311 0 97.4
Wetland 0 0 0 0.0047053 0 0.267025 98.3
Column Total (P.j) 0.1114645 0.30158833 0.2452156 0.0206625 0.0523773 0.268691
Producer accuracy 99.6 95.2 99.6 77.2 87.3 99.4
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Tables 7–12 present intensity matrices for Woodland, Plantation, Agriculture, Settlement,
Wetland, and Grassland, respectively. The information in the tables indicate the comparison between
the observable transition intensities to the hypothetical uniformity of transition intensities.

Table 7 indicates that Woodland loss intensities were high to Plantation (68%), Grassland
(39.4%), and Agriculture (23.6%) which was almost at equilibrium with the uniform loss 24.9%.
Woodland gain intensities targeted Plantation (47.9%) and Grassland (23.1%) (Table 7); how-
ever, Grassland has a bigger size compared to Plantation (Table 4). Tables 8 & 10 show that
Plantation and Settlement loss and gain intensities were very low and had low values in total
areas (Table 4). Table 9 shows that Agriculture loss intensity was high to Settlement 37.1%,
then to Grassland 17.8% and to Woodland 8.8%, and gained more from Settlement (46.1%)
and from Grassland and relatively from Woodland than in any other class. Hence, Agriculture
loss intensity targets Settlement and Grassland. Table 11 indicates that Wetland loss and gain
intensities targeted Plantation and Woodland. Table 12 also shows that Grassland loss and
gain intensities targeted Agriculture and Settlement.

Table 5. Map percentages in gain, loss, persistence, swap, and net changes.

Land cover Gain Persistence Loss Class total Swap location change Net quantity change

Woodland 9.3 19.4 17.8 27.1 18.7 8.4 loss
Plantations 1.3 0.3 1.2 2.5 2.3 0.1 gain
Agriculture 16.6 8.8 7.1 23.7 14.1 9.6 gain
Settlement 3.7 1.0 3.3 7.0 6.7 0.3 gain
Wetland 7.3 19.9 2.4 9.6 4.7 4.9 gain
Grassland 8.0 4.4 14.5 22.5 29.0 6.5 loss
Uniform change bold 46.2 53.8 46.2 92.4

Swap = Gain plus Loss – (Net quantity change (NQC); NQC = Gain − Loss

Figure 3. Classified Land use/land cover and the Forestry map of Malawi 1999 (left) and 2018 (right).
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Figure 4(a) illustrates the intensity analysis showing three (3) components’ sizes in Tables 4
& 5 depicting LULC classes that gained/lost. Wetland, Settlement, Plantation, and Agriculture
have a positive sign in Quantity/net change component showing higher values in 2018 than
in 1999 (Tables 4 & 5). Woodland and Grassland have a negative sign showing losses in 2018.

Figure 4(b) indicates the relationship of Quantity (net change), Swap separated into Exchange
and Shift intensities of LULC classes and to overall components as shown in Tables 4 & 5. The
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Table 6. Overall intensities of gains and losses by Land Use Land Cover classes for the whole of Malawi.

Woodland Plantations Agriculture Settlement Wetland Grassland

Loss 17.8 1.2 7.1 3.3 2.4 14.5
1999 total 37.2 1.5 15.9 4.3 22.2 18.9
Loss intensity 47.8 79.5 44.5 76.7 10.6 76.8
Gain 9.3 1.3 16.6 3.7 7.3 8.0
2018 total 28.7 1.6 25.4 4.7 27.2 12.4
Gain intensity 32.5 81.2 65.4 78.4 26.8 64.5
Uniform change 46.2 46.2 46.2 46.2 46.2 46.2

If gain or loss is larger than uniform the class is active. If the gain or loss is less than the uniform value then the classes are
dormant

Table 7. Woodland Transition Intensity.

Woodland transition Percent of map Intensity (% of class)

Lost to Plantation 1.1 68.1
Plantation 2018 1.6
Lost to Agriculture 6 23.6
Agriculture 2018 25.4
Lost to Settlement 0.7 14.5
Settlement 2018 4.7
Lost to Wetland 5.1 18.9
Wetland 2018 27.2
Lost to Grassland 4.7 39.4
Grassland 2018 12.4
Uniform loss 24.9
Gain from Plantation 0.7 47.9
Plantation 1999 1.5
Gain from Agriculture 2.5 15.9
Agriculture 1999 15.7
Gain from Settlement 0.5 12.2
Settlement 1999 4.3
Gain from Wetland 1.2 5.5
Wetland 1999 22.2
Gain from Grassland 4.4 23.1
Grassland 1999 18.9
Uniform gain 14.9

Table 8. Plantation transition intensity.

Plantation transition Percent of map Intensity (% of class)

Lost to Woodland 0.7 2.4
Woodland 2018 28.7
Lost to Agriculture 0.13 0.5
Agriculture 2018 25.4
Lost to Settlement 0.02 0.4
Settlement 2018 4.7
Lost to Wetland 0.2 0.8
Wetland 2018 27.2
Lost to Grassland 0.1 0.8
Grassland 2018 12.4
Uniform Loss 1.2
Gain from Woodland 1.1 2.9
Woodland 1999 37.2
Gain from Agriculture 0.03 0.2
Agriculture 1999 15.7
Gain from Settlement 0.01 0.2
Settlement 1999 4.3
Gain from Wetland 0.1 0.5
Wetland 1999 22.2
Gain from Grassland 0.1 0.3
Grassland 1999 18.9
Uniform Gain 1.3
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overall Quantity/Net change component line (OQCL) is 32% of the overall differences. Agriculture
land and Wetland extends its Quantity Component beyond the Quantity Component line.
Woodland, Grassland, Plantation and Settlement Quantity/net change Component (QC) ends
before the Quantity Component line. The Quantity and Exchange Overall line (QEOL) indicates
that the summation of the Quantity/Net changes and Exchange components overall is 97% of the
differences overall. The two lines difference is 65% and is equivalent to the intensity of the
overall Exchange (Figure 4(b)). The intensity of Shift Overall is 3%, thus 100% minus 97%. The

Table 9. Agriculture transition intensity.

Agriculture transitions Percent of map Intensity (% of class)

Lost to Woodland 2.5 8.8
Woodland 2018 28.7
Lost to Plantation 0.03 1.9
Plantation 2018 1.6
Lost to Settlement 1.7 37.1
Settlement 2018 4.7
Lost to Wetland 0.6 2.1
Wetland 2018 27.2
Lost to Grassland 2.2 17.8
Grassland 2018 12.3
Uniform Loss 9.5
Gain from Woodland 6 16.1
Woodland 1999 37.2
Gain from Plantation 0.1 8.9
Plantation 1999 1.5
Gain from Settlement 2 46.1
Settlement 1999 4.3
Gain from Wetland 0.8 3.5
Wetland 1999 22.2
Gain from Grassland 7.7 40.9
Grassland 1999 18.9
Uniform Gain 19.8

Table 10. Settlement transition intensity.

Settlement transition % of map Intensity (% of class)

Lost to Woodland 0.5 1.8
Woodland 2018 28.7
Lost to Plantation 0.01 0.6
Plantation 2018 1.6
Lost to Agriculture 2 7.9
Agriculture 2018 25.4
Lost to Wetland 0.2 0.7
Wetland 2018 27.2
Lost to Grassland 0.6 4.8
Grassland 2018 12.4
Uniform Loss 3.5
Gain from Woodland 0.7 1.8
Woodland 1999 37.2
Gain from Plantation 0.02 1.4
Plantation 1999 1.5
Gain from Agriculture 1.7 11.0
Agriculture 1999 15.9
Gain from Wetland 0.1 0.2
Wetland 1999 22.2
Gain from Grassland 1.2 6.3
Grassland 1999 18.9
Uniform Gain 21.6
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Settlement, Plantation Wetland, and Grassland have more intensive Shift relative to Shift Overall
compared to Agriculture and Woodland Shift intensity.

3.4. Comparison of woodland cover between 1999 and 2018 in co-management and
government-managed forest reserves

The trend of decreasing Woodland/forest cover was observed in both CM and GM FRs (Table
13, Figures 2 & 3). In CM sites, 37% of forest cover was lost and the results showed significant

Table 11. Wetland transition intensity.

Wetland transition % of map Intensity (% of class)

Lost to Woodland 1.2 4.2
Woodland 2018 28.7
Lost to Plantation 0.1 6.9
Plantation 2018 1.6
Lost to Agriculture 0.8 3.0
Agriculture 2018 25.4
Lost to Settlement 0.1 1.1
Settlement 2018 4.7
Lost to Grassland 0.2 1.6
Grassland 2018 12.4
Uniform Loss 3.2
Gain from Woodland 5.2 13.8
Woodland 1999 37.2
Gain from Plantation 0.2 15.1
Plantation 1999 1.246
Gain from Agriculture 0.6 3.6
Agriculture 1999 15.9
Gain from Settlement 0.2 4.4
Settlement 1999 4.3
Gain from Grassland 1.2 6.1
Grassland 1999 18.9
Uniform Gain 9.4

Table 12. Grassland transition intensity.

Grassland transition % of map Intensity (% of class)

Lost to Woodland 4.4 15.2
Woodland 2018 28.7
Lost to Plantation 0.1 3.8
Plantation 2018 1.6
Lost to Agriculture 7.7 30.4
Agriculture 2018 25.4
Lost to Settlement 1.2 25.3
Settlement 2018 4.7
Lost to Wetland 1.2 9.3
Wetland 2018 12.4
Uniform Loss 23.5
Gain from Woodland 4.9 13.1
Woodland 1999 37.2
Gain from Plantation 0.1 6.8
Plantation 1999 1.5
Gain from Agriculture 2.2 13.8
Agriculture 1999 15.9
Gain from Settlement 0.6 13.6
Settlement 1999 4.3
Gain from Wetland 0.2 1.1
Wetland 1999 18.9
Uniform Gain 10.2
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differences (p 0.04) between 1999 and 2018. Of 11 FRs, one experienced an increase in the
extent of forest, two showed a slight change and nine experienced a decline. Furthermore, in
GM FRs, 11.6% decline of forest cover with a statistical difference (p 0.001) was revealed
between the years. Out of 12 FRs, 10 experienced forest loss, one was stable, one had an
increase thus >80% of GM FRs had a decline in forest cover. However, when CM and GM FRs
were analysed, there were no significant differences (p 0.67) in forest cover between 1999 and
2018 between strategies (Table 13).

The Wilcoxon sign rank test in co-management p = 0.04; in government-management p = 0.01
compared woodland cover in hectares between 1999 and 2018. Kruskal–Wallis X2 = 0.18218, df = 1,
p = 0.67 between management strategies

4. Discussion

4.1. Classification accuracies

The results on IPCC LULC of 1999 and 2018 yielded high overall, user and producer accuracies in both
1999 and 2018 except in Plantation producer accuracy which yielded 77.2% (Table 3a & 3b). The low
accuracy is attributed to the confusion of the signatures of Plantation with thick/closed Miombo
woodland which were similar. The overall accuracies for both images were above 90%. According to
Kamusoko and Aniya (2007), the recommended accuracies from the classification should be ≥85%.
Initially, the accuracies were extremely low. However, the results improved by subdividing each class
during the collection of training and validation data. The sub-divisions were done due to differences
in signatures within a class across the country and were later combined. Furthermore, the knowledge
of the area and the sub-divisions within the classes improved the results. Similarly, the results were
robust because the error adjusted matrix, the area of the unbiased estimator, and confidence
intervals were used in the classification (Appendices A1, A2). The method used solved the problem
of unequal samples and other errors (Jeon et al., 2014; Olofsson et al., 2014, 2013). Even though the
recommended classification has advantages, the method is rarely observed and has been well
articulated in this study.

Alternatively, the results from the intensity analysis (IA) showed that Agriculture gained more
from Settlement, than from Woodland and Grassland (Table 9). Visual interpretation of the
images indicated that some Agriculture areas had a similar signature as Settlements. In addition,
in Malawi small-scale farms/gardens are around Settlements. These reasons might have confused
the classifier from distinguishing Agriculture from Settlement and might have introduced some

Table 13. Forest cover in hectares in Co-management and Government-management strategies.

Region Co-managed forest reserves 1999 (Ha) 2018 (Ha)
Government Managed

forest reserves 1999(Ha) 2018 (Ha)

Northern Mughese 656 659 Musisi 5.194 4.031
Uzumara 432 300 Ruvuo 3.512 2.750
Vinthukutu 1.848 1.367 Bunganya 2.393 1.865
Perekezi 13.228 13.600 Kaning’ina 11.897 10.872
Mkuwadzi 968 1.326 Dwambazi 54.896 54.896

– – – Kawilwi 127 354
Central Chimaliro 12.621 11.074 Dzalanyama 80.773 76.331

Dzonze-Mvai 2.919 1.973 – – –
Southern Liwonde 21.127 16.938 Mangochi 35.232 24.282

Mulanje 28.647 17.221 Phililongwe 12.099 7.327
Mathandwe 23.416 18.371 Amalika 213 32
Masenjere 204 156 Thambani 4.473 3.694

– – Chiradzulu 400 182
Total area 105.614 66.0467 Total area 211.212 186.617

Wilcoxon sign rank test in Co-management p = 0.04; in Government p = 0.01 in comparing woodland cover in hectares between
1999 and 2018. Kruskal–Wallis X2 = 0.18218, df = 1, p = 0.67 between management.
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errors. These results from IA (not undergone through error adjustment) of Agriculture gaining
from Settlement are consistent with those reported in China by Yu, Hu, van Vliet, Verburg, and
Wu (2018) and GlobeLand30 by Shafizadeh-Moghadam, Minaei, Feng, & Pontius (2019). In
addition, these results confirm the argument that errors are introduced in the classification and
require adjustment (Card, 1982; Jeon et al., 2014; Olofsson et al., 2014, 2013). Accuracy assess-
ment using error adjustment (Appendices A1 & A2) and the transition intensities have been used.
However, the aim of the study was not to compare the results from these methods.

4.2. Land-use land-cover change

The first objective assessed LULCC at a national scale in Malawi between 1999 and 2018. Woodland
decreased with a net loss of 8.4% while Agriculture increased with 9.6% net gain (Tablea 4 & 5). The
classifiedmaps acted as baseline data to determine the impact of PFMCM inmaintaining the forest cover
in comparison with GM across the country. When the Woodland loses to Plantation, Agriculture, and
Grassland (Tables 4 & 7), the following scenarios are expected (i)Woodland loss to Agriculturemay remain
permanently under cultivation, or areas that degrade in fertility may be abandoned in the search for new
areas, targeting the remaining Woodlands (Figure 5). The abandoned areas may develop into grass and
later into woodlands. If not managed grassy areas coupledwith dry hot season fires could lead to disaster
(ii) Woodland loss to Plantation suggests that when Plantations are harvested, not all are replanted and
develop back to woodland. The observation could be due to limited monitoring mechanisms and plans
after harvesting, however, the Plantation has low hectarage (Table 4) (iii) Woodland losing to Grassland
happens whenwoody products are harvested and grass species emerge as the first developmental stage
towards recovery and maturity and is a temporal degradation (Figure 5). If the stage is not managed, the
Woodland succession may be lengthened. The loss intensity transition from Woodland to Agriculture
confirm earlier reports that Agriculture is the dominant livelihood activity in SSA (Campbell, 1996; Rudel,
2013). Low Woodland gain from Agriculture (Table 9) suggests that with increasing population,
Agriculture areas are rarely abandoned to regenerate towards woodlands. The LULC transition intensities
at class level andonoverall has also shown thatWoodland andGrasslandQuantity/Net change results into
losses (Tables 4 & 5; Figure 4(a,b)). Large exchange intensity in Woodland with no shift intensity suggests
that the Woodland gain from other classes is insignificant (Tables 4 & 5, Figure 4(a,b)). However,
Agriculture gains as its Quantity/Net change extends the Quantity overall line (Figure 4(a,b)). As
Woodland transitions to Agriculture and Grassland, Agriculture and Grassland transitions to Woodland
in other areas with Woodland decreasing. These findings agree with earlier reports of Malawi’s over-
dependency on Agriculture and wood energy. Malawi’s’ population increased from 9.8 to 17 million
(1998–2018) and contribute to high demand for land resources for Agriculture and infrastructural
development (Chirwa et al., 2017; Government of Malawi, 2018; Munthali et al., 2019; Pullanikkatil et al.,

Figure 5. Dominating grass (left) and Agriculture (right) in clear-felled areas of Liwonde Co-managed forest reserve. The picture
was taken during Ecological Assessments in May 2017.
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2018). Jha and Bawa (2006), reported the relationship between the increased population with food
production.

Similarly, Woodland transition to Grassland suggests that intensive utilisation of woody products
influence the emergence of grass. These results further confirm that Woodland succession/recovery is
relatively high from Grassland than from cultivated areas (Tables 4 & 7). Woodland recovery is due to
its resilience to disturbance (Geldenhuys, 2010, 2014; Gonçalves et al., 2017; Syampungani,
Geldenhuys, & Chirwa, 2016). Rudel (2013) reported that there is a reduced deforestation of 4.5% in
SSA. It seems the trend of forest recovery from Grassland is common. Gao et al. (2016), also reported
the recovery of forest from Grassland in Indonesian Peatland forest. There is more Grassland in 1999;
hence, Woodland gains more from Grassland with uniform intensity gains, while avoiding all other
classes (Table 7). However, the Woodland recovery from Grassland is lower than the losses to Grassland
and other LULC classes. The major contributing factors to Woodland loss in Malawi are the conversion
to Agriculture, high demand for woody products (firewood/charcoal and infrastructure), poverty and
population increase (Munthali et al., 2019; Pullanikkatil et al., 2018; Zulu, 2010). The country’s demand
for wood energy and unsustainable harvesting also increases grass accumulation (Zalengera et al.,
2014; Zulu, 2010). Similarly, the high area for Grassland (Table 4) agrees with reports that indicate high
demand for wood energy in Africa (Campbell, 1996; Handavu, Chirwa, & Syampungani, 2019; Kalaba
et al., 2013; Munthali et al., 2019; Zalengera et al., 2014; Zulu, 2010). Wood energy in Malawi accounts
for more than 97% in remote areas (Bandyopadhyay et al., 2011) and is the country's’ primary source of
energy as hydro-electric power has challenges (Zalengera et al., 2014; Zulu, 2010). Therefore, sustain-
able management for Woodland quick recovery while using silvicultural practices for utilisation
towards maturity is required (Geldenhuys, 2014; Lewis, Edwards, & Galbraith, 2015; Syampungani
et al., 2016).

With more Woodlands being targeted for Agriculture, and wood energy, the overall ecological
functions could be worsened without sustainable land management (Bi et al., 2015; Song et al.,
2013). Furthermore, harmonisation of policies for combined efforts to sustainably manage
Woodlands in Malawis’ landscape and in the region is needed.

It is important to appropriately interpret the transition intensities to have meaningful information
which could be the basis for monitoring and adaptive management including other developmental
programmes, locally, nationally, regionally and globally.

4.3. Woodland/forest cover change in co-management and government-management

The second objective assessed the Woodland/forest cover within and between CM and GM between
1999 and 2018. The results showed significant changes in the forest cover within CM and GM. These
results suggest that FRs in both management strategies play a significant role in peoples’ livelihoods
and that CM has not addressed deforestation and degradation making the challenge to remain
persistent (Figures 2 & 5). In CM, the extent of forest cover declined by 37% overall. Of 11 FRs, one
experienced an increase in forest cover, while two showed a slight change and nine had a decline
(Table 13). These results are consistent with reports that indicate unsustainable management in
forest CM (Nagendra et al., 2005; Phiri et al., 2019). Similarly, >80% of GM forest reserves experienced
a decline in forest cover. Ten forest reserves among the 12, experienced forest cover loss (Table 13).
Observations on Google Earth showed encroachment (Settlements, Agriculture) and intense wood-
land utilization with the proliferation of grass in both strategies (Figures 2 & 5). The decrease in
Woodland/forest cover could be attributed to limited knowledge in implementing management
plans in CM (in GM forest reserves, plans are lacking) (Tsoka and Kananji, pers. comm.). For instance,
determining and regulating the annual allowable harvest of woody products which are viewed as
a natural capital by the forest-dependent communities (Handavu et al., 2019; Kalaba et al., 2013)
could be challenging. The other reason for the decrease in forest cover could be attributed to
demand for land as discussed earlier. Therefore, there is a need to have viable participatory
monitoring plans, diversified management in both CM and GM forest reserves.
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Alternatively, when CM and GM forest reserves were compared, the findings showed no significant
difference between the strategies. These results suggest that forest cover loss in both strategies has
remained unabated (Table 13) and that CM has not addressed the challenge (Table 13, Figures 2 & 5).
Even though the results show statistical differences within strategies with Google images indicating
changes, Pontius, Shusas, and McEachern (2004) have argued that conventionally, these statistical
pieces of evidence can hardly show patterns of change in the landscape. In this study, the statistical
results showingWoodland/forest cover decline confirm the patterns shown in the transition intensities.
The Forest Department in collaboration with the police has been slashing crops and demolishing
houses in CM and GM forest reserves and have been administering court cases (pers. observ.).

Furthermore, other studies have shown that degraded areas could recover and mitigate forest cover
loss, if the areas are not permanently changed to other land uses, and if sustainably managed due to
Miombos’ ecological characteristics (Geldenhuys, 2010; Gonçalves et al., 2017; Syampungani et al., 2016).

It seems monitoring and diversified management are limited and could assist in preventing
further deforestation/degradation in forest reserves. Therefore, continuous decrease in Woodland/
forest cover and if coupled with permanent conversion to other land uses could lead to detrimental
impacts on the ecological functions if its sustainability will not be checked. Even though changes in
forest cover are evident, in both strategies CM with improved institutional capacities in regulating
yield could maintain the forest cover and assist in mitigating deforestation and forest degradation,
locally, nationally and in the region while satisfying daily needs.

4.4. Implication

Miombo woodlands' ecological functions are vital at local and global scales and could sustain the
environment, socio-economic needs; however, the Woodlands are declining in Malawi. The Woodland
loss at national level from 4.39 to 3.39 million hectares and also the decline of forest cover in PFM (co-
management) and government-management between 1999 and 2018 has an implication on the
Miombo Woodlands ecological functions at local, national, regional and global scales. Quan et al.
(2019) also reported loss of forests at three periods in China. The results are also consistent with
previous studies that have indicated forest loss (Aldwaik & Pontius, 2012; Bonan, 2008; Gao et al., 2016;
Lambin & Meyfroidt, 2010; Pontius & Santacruz, 2014). The ecological dominance of Miombo wood-
lands, its resilience and stable characteristics (Geldenhuys, 2010; Gonçalves et al., 2017; Syampungani
et al., 2016), should be a motivation to practically upscale its recovery and sustainability. In addition, the
inclusion of Agriculture in the Miombo landscape should enhance land management and food security.
Sustainable rotational agro-production could facilitate the Woodland recovery process and could
provide tangible ecological functions in the short and long term. This requires harmonisation of policies
to adaptive management of LULC without jeopardising the ability of the Woodlands to provide the
ecological functions in the future. Degraded areas should be considered as a temporal condition for
Woodland succession. Woodland/forest cover loss in both CM and GM should be the starting point for
sustainable management of degraded areas. CM is recommended because of communities' legal
authority to utilise the Woodlands to cushion many livelihoods in a poverished country and in the
region. However, challenges communities’ encounter in the implementation need to be documented
to assist in reviewing policies to re-enforce CM procedures. GM requires proper planning to minimise
and to enhance sustainability and this is urgently required. The knowledge gained is a basis to evaluate
future developmental programmes in both strategies. Even though the study focused in Malawi, the
results have a wider conservation implication on Miombo Woodlands in SSA and in the tropics. The
methods used, and the results generated should form a routine for other subsequent LULCC studies.
LULC transition intensities can further be interpreted by other countries in SSA with similar conditions
to assist in the sustainable management of Woodlands at local, national and regional scales.
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5. Conclusions

LULCC was analysed with a focus on theWoodland and further established the impact of CM and GM on
the cover in forest reserves. The error adjustment yielded substantial and robust accuracies in the
classification. The transition intensities and Quantity net changes have shown decreased Woodland
with a net loss of 8.4%while Agriculture had a net gain of 9.6%. The forest cover decreasing trend in both
strategies showed proliferation of grass species as shown in Figure 5. The results have indicated that co-
management has not maintained the forest cover. In CM forest reserves, adequate legally binding
agreements, sustained annual harvests and monitoring are recommended to assist in maintaining forest
cover. In GM forest reserves, access rights of woody resources should be reviewed, management plans
developed, implemented andmonitored to enhance biodiversity conservation and to protect fragile and
water catchment areas. The findings form the foundation for reviewingpolicies to foster Sustainable Land
Use Management (SLUM) and monitoring at local, national and in the region to mitigate detrimental
changes. Future studies should investigate the challenges encountered in CM and use information to
improve GM forest reserves. There is a need to harmonise policies for integrated land management.
Further, interpretation of LULC transition intensities by other countries in SSA with similar conditions as
Malawi is recommended. Policy reviews are required to reflect new ideas that could sustain the
Woodlands in the landscape.
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