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Abstract
Aims This study was conducted to assess the effects of
shifting cultivation and its conversion to mono-cropping
on soil organic carbon (SOC) and total nitrogen (STN).
Methods We compared soil pH, texture, bulk density
and SOC and STN contents and stocks (0–100 cm) in
natural forest (NF), adjacent shifting cultivation (SC)
areas (> 100 years old) having three (SC-3Y), five (SC-
5Y) and seven (SC-7Y)-year-old fallowing, and
10 year-old mono-cropping field (MCF) converted from
shifting cultivation in Western Ethiopia.
Results There was no significant difference in soil pH in
NF and all shifting cultivation areas. However, MCF
had lower soil pH compared to SC-3Y and SC-5Y.
There was no or very little difference in soil texture
and bulk density across the study sites. Shifting cultiva-
tion did not affect SOC and STN stocks. However,
conversion of shifting cultivation to mono-cropping
decreased SOC (45–50% over 10 years; loss of 11.6 ±
0.2 Mg C ha−1 yr.−1) and STN stocks (18–45% over
10 years; loss of 0.6 ± 0.1 Mg N ha−1 yr.−1).
Conclusions While shifting cultivation maintained
SOC and STN, its conversion to mono-cropping de-
creased them, potentially contributing to global
warming and decreasing soil fertility.

Keywords Natural forest . Shifting cultivation .Mono-
cropping . Soil bulk density . Soil organic carbon . Soil
nitrogen

Introduction

Shifting cultivation, also termed as swidden or slash-
and-burn agriculture, is an extensive farming system
(e.g., Heinimann et al. 2017; Peng et al. 2014; Schuck
et al. 2002). It has been one of the main agricultural
systems practiced in the tropical and subtropical areas of
Africa, America, Asia, Pacific and Caribbean, covering
roughly 280 million hectares worldwide (Heinimann
et al. 2017) and is a source of livelihoods for a half-
billion people around the globe (van Vliet et al. 2012;
Craswell et al. 1997). In general, the shifting cultivation
cycle involves three phases: clearing specific forest area
by the slashing and burning of vegetation, followed by
cultivation of crops for one or two years, and followed
by a variable fallow period to allow for the growth of
secondary forests (e.g., Mertz et al. 2009; Fox et al.
2000; Eden and Andrade 1987).

Shifting cultivation has been considered as a driver of
deforestation and forest degradation (e.g., Rahman et al.
2012; Ziegler et al. 2011; Mertz et al. 2009; Gibbs et al.
2007). It has been reported that shifting cultivation was
responsible for 60% of deforestation and greenhouse
gas (GHG) emissions around the tropics (e.g.,
Davidson et al. 2008; Geist and Lambin 2002). Others
consider that shifting cultivation can impose serious
negative environmental impacts including land
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degradation (e.g., Peng et al. 2014; Rahman et al. 2012).
However, recently studies argued that shifting cultiva-
tion can sustain ecosystems, livelihoods, culture and
food security for millions around the tropics (e.g.,
Bruun et al. 2018; Dressler et al. 2017; van Vliet et al.
2012; Parrotta et al. 2012; Dalle et al. 2011). Therefore,
further studies are urgently needed to better understand
the impacts of shifting cultivation on various aspects of
ecosystem services and livelihoods.

The impact of land-use change on soil C and N has
been intensively studied since it may result in changing
soil fertility, soil carbon and GHG emissions (e.g.,
Wainkwa Chia et al. 2017; Kim and Kirschbaum
2015; Wei et al. 2014). It is known that converting
natural forest to agricultural lands can result in loss of
soil C and N due to a reduction in the amount of biomass
reverted to the soil; tillage-induced disturbances, de-
crease in soil aggregation, reduction in physical protec-
tion of the soil organic matter, and increase in soil
erosion (e.g., Don et al. 2011; McLauchlan 2006;
Murty et al. 2002). However, different results were
reported from previous studies on how converting nat-
ural forest to shifting cultivation affects soil C and N.
Studies found that shifting cultivation practices aggra-
vated soil loss (Hattorie et al. 2005; Grange and
Kansuntisukmonkol 2003) and decreased soil carbon
and nitrogen (Mukul and Herbohn 2016; Ribeiro Filho
et al. 2015). In contrast, other studies argued that
shifting cultivations can decrease soil loss (Thomaz
2013) and conserve soil carbon (Chan et al. 2016;
Sarkar et al. 2015). These varying results and uncer-
tainties suggest that further studies are required to better
understand the effect of shifting cultivation on soil C
and N.

Shifting cultivation has been practiced in Eastern
Wollega, Ethiopia for centuries. Recently, the local com-
munities were forced to convert to conventional mono-
cropping practices through the influence of governmen-
tal extension workers. Similar situations including the
decrease of shifting cultivation and the conversion of
shifting cultivation to mono-cropping or plantations has
occurred in other regions in Ethiopia and other tropical
countries (e.g., Kilawe et al. 2018; Bruun et al. 2017;
Dressler et al. 2017; van Vliet et al. 2012; Bruun et al.
2009; Fox et al. 2009; Mertz 2009). van Vliet et al.
(2012) discussed that the major driving factors for these
conversions are market development, population
growth, and public policies (particularly conservation
policies). However, only a few studies investigated the

impact of conversion of shifting cultivation to conven-
tional cropping practices on soil C and N and the con-
sequences of the impact (e.g., van Vliet et al. 2012;
Bruun et al. 2009). Since it is expected that conversion
of shifting cultivation to conventional cropping prac-
tices will increase (e.g., Heinimann et al. 2017; van
Vliet et al. 2012) it is crucial to access how the conver-
sion affects soil C and N, two important actors in green-
house gas (GHG) emissions and soil fertility.

The major objective of this study was to assess how
shifting cultivation and its conversion to mono-cropping
affected SOC and STN stocks by comparing SOC and
STN stocks in natural forest, adjacent shifting cultiva-
tion and converted mono-cropping fields in Western
Ethiopia. We hypothesized that both shifting cultivation
and its conversion to mono-cropping decreased SOC
and STN stocks compared to SOC and STN stocks in
adjacent natural forest.

Materials and methods

Study site

The study was conducted in the Gudeya Billa District,
western Ethiopia, which is located 275 km west of the
capital city, Addis Ababa (Fig. 1). The study area re-
ceives a mean annual rainfall of 1682 mm with a uni-
modal pattern (Enkossa 2008). The area gets its highest
rainfall between May and October, gradually decreasing
in November and December, and with little or no rainfall
during January and February (Enkossa 2008). The an-
nual mean temperature averages 17 °C with maximum
and minimum temperatures of about 22 and 11 °C,
respectively (GARDO 2006). The topography of study
area is characterised by rough topography with moun-
tains, deep gorges, escarpments and plateaus (Enkossa
2008) and soil typology is vertisols (Jones et al. 2013;
EPA 2003).

The study was conducted in adjacently located natu-
ral forest (hereafter referred to as NF), shifting cultiva-
tion areas having three (SC-3Y), five (SC-5Y) and seven
(SC-7Y)-year-old fallowing and converted mono-
cropping fields (MCF) from shifting cultivation 10 years
ago (9o 20′ − 9o 25’ N and 36o 35′ − 37o 05′ E;
2100 m a.s.l.).

The NF covers approximately 6000 ha and is domi-
nated byAlbizia gummifera, Trichilia emetic andCroton
macroschatus. This forest is found on plain land and
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conserved by the local communities for more than
300 years. The forest area is accessed for traditional
honey production.

Shifting cultivation is a common land-use type and a
major source of livelihood in the study area. The local
communities have been practicing shifting cultivations
for centuries and inherited the practice from their ances-
tors (personal communication). This agricultural tech-
nique involves three phases: First, local communities
cut naturally-grown, 8 to 10-year-old secondary forests
and burn them at the site between the end of April and
beginning of May. Second, in the burned areas, local
communities sow maize (Zea mays L.) or sorghum
(sorghum biocolor) without tillage at the end of May.
Using a locally prepared wooden stick (called a
BHordaa^) they open a small hole in soil, insert seeds,
and then put soil back into the hole. No irrigation and
fertilizer is applied and crops are manually harvested in

December. After harvesting, crop residues remain in the
field. Third, local communities fallow the areas for 8
to10 years allowing natural regeneration of vegetation.
For the study, areas under three (SC-3Y; 40 ha), five
(SC-5Y; 40 ha) and seven (SC-7Y; 40 ha)-year-old
fallowing were selected and they were adjacent to the
NF.

The MCF (10 ha) was converted from shifting culti-
vation 10 years ago (in 2005). Local communities cul-
tivate teff (Eragrostis tef), maize or sorghum in the
MCF. Tillage practices by oxen ploughing (5–10 cm
soil depth), is carried out three to four times before
sowing. This is done using a traditional tillage imple-
ment called a Maresha. After the last ploughing, 2–3
people compact the soil using their feet to bury weeds
and other vegetation and then cattle are brought in for
further compaction. A mixture of inorganic fertilizers,
urea and diammonium phosphate (DAP) (5:5) are

Fig. 1 Map of the study site (GudeyaBilla in Western Ethiopia)
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applied (50 kg ha−1) to the field during sowing time.
Sowing time for teff is from June to July and it is
manually harvested after 5 to 6 months. Maize or sor-
ghum sowing season is fromApril toMay depending on
rain seasons and harvest occurs after 5 to 6 months.
Crop residues remain in the field.

Soil sample collection and analyses

To determine SOC and STN stocks in NF, SC-3Y, SC-
5Y, SC-7Y and converted MCF sites, soil samples were
collected from six randomly selected spots at each site.
For each spot, a 1 × 1 m soil profile was opened, and one
intact horizontal soil sample core was collected using a
soil core sampler (5 cm diameter) from the centers of the
five consecutive soil depths, 0–10, 10–20, 20–40, 40–70
and 70–100 cm. Additional sub-samples were collected
from the centers of the five consecutive soil depths.

The collected soil cores were used to determine bulk
density by dividing the oven dry mass of soil at 105 °C by
the volume of the core soil sampler (Grossman and
Reinsch 2002). Soil samples collected from the 0–10 cm
depth were used to determine soil texture with the
Hydrometer method (Gee and Bauder 1979; Gee and Or
2002) by finding the sand, silt and clay percentages. Soil
textural classification follows USDA system (Soil Survey
Staff 1999). Furthermore, they were used to determine soil
pH by using a 1: 2 of the soil: H2O diluted soil solution and
a pH meter (Accument 910, Fisher Scientific Ltd.,
Pitsburgh, PA, USA). The collected soil sub-samples were
sieved through 2 mm mesh and used to determine SOC
and STN contents with the Walkley and Black titration
method (Walkley and Black 1934) and the Kjeldahle
procedure (Bremner and Mulvaney 1982), respectively.

There was no rock fragment content > 2 mm.

Determination of soil organic carbon and nitrogen
stocks

SOC stocks (Mg ha−1) for each sampled depth were
calculated using the following equation (Solomon
et al. 2002) (Eq. 1):

C ¼ z� ρb � cð Þ � 10 ð1Þ
where,

C SOC stock (Mg ha−1) of sample depth;
z thickness of the sample depth (cm);

ρb bulk density (g cm−3) of a sample depth; and
c SOC content (g kg−1) of a sample depth.

In the same way, STN stocks (Mg ha−1), for each
sample depth was calculated using the following equa-
tion (Solomon et al. 2002) (Eq. 2):

N ¼ z� ρb � nð Þ � 10 ð2Þ
where,

N STN stocks (Mg ha−1) of the sample depth;
z thickness of the sample depth (cm);
ρb bulk density (g cm−3) of a sample depth; and
n STN content (g kg−1) of a sample depth.

For soil samples collected from the NF and SC-3Y,
SC-5Yand SC-7Y, SOC and STN stocks were summed
up across sample depths. However, soil samples collect-
ed from MCF, SOC and STN stocks were determined
differently, since soil compaction inMCFmay influence
the amounts of soils sampled from fixed soil depths
(Solomon et al. 2002). The differences in soil bulk
densities were treated by adjusting the thickness of each
sampled layer in MCF with respect to equivalent mass
of soils collected in NF using the following equation
(Solomon et al. 2002) (Eq. 3).

Zcorr¼ ρbNF=ρbMCF � z ð3Þ
where,

Zcorr adjusted thickness of a soil sample layer in
MCF;

ρbNF bulk density of the sampled soil layer in NF;
ρbMCF bulk density of the sampled soil layer in MCF;

and
z thickness of soil layer in MCF. The adjusted

thickness of soil layers was used to determine
SOC and STN stocks.

Statistical analyses

The normality of all data distribution was analyzed first
using the Shapiro–Wilk Normality Test (Shapiro and
Wilk 1965). One-way analysis of variance (ANOVA)
was used to evaluate the difference in mean values of
soil pH, bulk density, sand, silt, and clay contents and
stocks of SOC and STN and C: N ratio in NF, SC-3Y,
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SC-5Y, SC-7Yand MCF. For ANOVA test, violation of
assumptions of normal distribution (Shapiro–Wilk test),
‘homoscedasticity’ (Durbin–Watson statistic), and con-
stant variance (Spearman rank correlation) was checked
(Motulsky and Christopoulos 2004). When the assump-
tion was violated, the Kruskal Wallis non-parametric
analysis (Kruskal and Wallis 1952) was applied. All
results were assessed at 5% significance level. The
statistical analyses were conducted using SigmaPlot
Ver. 11.0 (Systat Software Inc., San Jose, CA, USA).

Results

Soil pH, texture and bulk density

There was no significant difference in soil pH (0–10 cm
soil layer) in NF (4.7 ± 0.5), SC-3Y (5.5 ± 0.4), SC-5Y
(6.3 ± 0.4) and SC-7Y (4.4 ± 0.1) (Table 1). However,
soil pH in MCF (3.9 ± 0.1) was significantly lower than
SC-3Y and SC-5Y (P < 0.05) (Table 1).

There was no significant difference in proportion of
sand, clay and silt across the study sites (0–10 cm soil
layer) (Table 1).

In 0–10 cm soil layer, soil bulk density in SC-5Y
(0.95 ± 0.03) was significantly but only slightly lower
than NF, SC-3Y, SC-7Y and MCF (1.01 to 1.06)
(P < 0.05) (Table 2). In 10–20 cm soil layer, there was
no significant difference in bulk density in NF, SC-3Y,
SC-5Y and SC-7Y (1.03 to 1.11) but bulk density in
MCF (0.99 ± 0.02) was significantly but only slightly
lower than other sites (P < 0.05) (Table 2). In 20–40 cm
soil layer, there were no significant difference in bulk
density in NF, SC-3Y, SC-5Yand SC-7Y (1.07 to 1.11)

but bulk density of MCF (0.91 ± 0.02) was significantly
but only slightly lower than other sites (P < 0.05)
(Table 2). In 40–70 cm soil layer, there was no signifi-
cance difference in bulk density among NF, SC-3Y and
SC-7Y (1.06 to 1.13) and their bulk density were sig-
nificantly higher than SC-5YandMCF (0.88 to 0.96) (P
< 0.05) (Table 2). In 70–100 cm soil layer, there was no
significance difference in bulk density among NF, SC-
3Y and SC-7Y (1.06 to 1.17) and their bulk densities
were significantly higher than SC-3Yand MCF (0.90 to
0.99) (P < 0.05) (Table 2).

Soil organic carbon

In 0–10 cm soil layer, SOC content in MCF (19.9 ±
0.2 g kg−1) was significantly (P < 0.05) lower than NF
(36.6 ± 0.3 g kg−1), SC-3Y (37.5 ± 0.3 g kg−1), SC-5Y
(38.9 ± 0.4 g kg−1) and SC-7Y (36.9 ± g kg−1) (Table 3).
However, there were no significant differences in SOC
contents among NF, SC-3Y, SC -5Y, and SC-7 Y
(Table 3). In 10–20 cm soil layer, SOC content in MCF
(15.2 ± 0.2 g kg−1) was significantly lower than SC-3Y
(33.9 ± 0.7 g kg−1), SC-5Y (3.0 ± 0.2%) and SC-7Y (29.6
± 0.2 g kg−1) but there were no significant differences
between NF (21.1 ± 0.1 g kg−1), SC-3Y(33.9 ± 0.7 g
kg−1), SC-5Y(29.6 ± 0.2 g kg−1)and SC-7Y(27.5 ±
0.2 g kg−1). In 20–40 cm soil layer, there were no signif-
icant differences in SOC contents in NF (16.9 ± 0.1 g
kg−1), SC-3Y (24.9 ± 0.2 g kg−1), SC-5Y (30.6 ± 0.6 g
kg−1) and SC-7Y (21.3 ± 0.1 g kg−1) but SOC contents
in SC-3Yand SC-5Y were significantly higher than MCF
(15.4 ± 0.1 g kg−1) (P < 0.05). In 40–100 cm soil layer,
there were no significant differences in SOC contents in
NF, SC-3Y, SC-5Y, SC-7Yand MCF (Table 3).

Table 1 Soil pH and texture (0–10 cm layer) in natural forest (NF), shifting cultivation areas having three (SC-3Y), five (SC-5Y) and seven
(SC-7Y)-year-old fallowing and 10 year-old mono-cropping field (MCF) converted from shifting cultivation

Land use type Soil pH Soil texture

Sand (%) Clay (%) Silt (%) Soil class

NF 4.7 ± 0.5AB 64 ± 1.40A 21.8 ± 1.49A 14.2 ± 1.97A Sandy loam

SC-3Y 5.5 ± 0.4A 54 ± 3.89A 31.8 ± 2.09 A 14.2 ± 2.56A Sandy loam

SC-5Y 6.3 ± 0.4A 44 ± 5.78A 35.8 ± 3.68A 20.2 ± 2.80A Loam

SC-7Y 4.4 ± 0.1AB 56 ± 2.29A 23.8 ± 1.43A 20.2 ± 1.75A Sandy clay loam

MCF 3.9 ± 0.1B 53.9 ± 3.14A 33.9 ± 2.27A 12.2 ± 2.15A Sandy loam

Means followed by the same upper case letter(s) within a column are not significantly different

Values are shown as mean ± standard error
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There was no significant difference in SOC stocks
(0–100 cm soil layer) among NF (188.7 ± 4.7 Mg C
ha−1), SC-3Y (243.5 ± 14.2 Mg C ha−1), SC-5Y
(229.9 ± 36.1 Mg C ha−1), and SC-7Y (254.8 ±
15.6 Mg C ha−1) (Table 4). The SOC stocks in MCF
(126.6 ± 9.0 Mg C ha−1) were 48.0% lower than SC-3Y

and 50.3% lower than SC-7Y (P < 0.05) (Table 4). The
SOC stocks in MCF were 44.9% lower than SC-5Y but
the difference was not statistically significant. Since
difference of SOC stocks between average of SC-3Y,
SC-5Yand SC-7YandMCFwas 116 ± 2MgC ha−1 and
MCF has been cultivated over 10 years after conversion

Table 2 Soil bulk density (g cm−3) in natural forest (NF), shifting cultivation areas having three (SC-3Y), five (SC-5Y) and seven (SC-7Y)-
year-old fallowing and 10 year-old mono-cropping field (MCF) converted from shifting cultivation

Soil layer (cm) Land use type

NF SC - 3Y SC-5Y SC-7Y MCF

0–10 1.06 ± 0.06Aa 1.04 ± 0.04Aa 0.95 ± 0.03Ba 1.01 ± 0.03Aa 1.01 ± 0.03Aa

10–20 1.14 ± 0.05Aa 1.05 ± 0.02Aa 1.03 ± 0.03Aa 1.11 ± 0.03Aa 0.99 ± 0.02Ba

20–40 1.08 ± 0.06Aa 1.07 ± 0.03Aa 1.01 ± 0.04Aa 1.11 ± 0.04Aa 0.91 ± 0.02Ba

40–70 1.06 ± 0.05Aa 1.12 ± 0.02Aa 0.96 ± 0.04Ba 1.13 ± 0.03Aa 0.88 ± 0.02Ba

70–100 1.06 ± 0.07Aa 1.17 ± 0.04Aa 0.99 ± 0.02Ba 1.11 ± 0.04Aa 0.90 ± 0.02Ba

Means followed by the same upper case letter(s) across rows and / or lower case letters within a column are not significantly different

Values are shown as mean ± standard error

Table 3 Soil organic carbon (SOC) and total nitrogen (STN)
contents (g kg−1) and C: N ratio in natural forest (NF), shifting
cultivation areas having three (SC-3Y), five (SC-5Y) and seven

(SC-7Y)-year-old fallowing and 10 year-old mono-cropping field
(MCF) converted from shifting cultivation

Soil layer (cm) Land use type

NF SC-3Y SC-5Y SC-7Y MCF

SOC (g kg−1)

0–10 36.6 ± 0.3Aa 37.5 ± 0.3Aa 38.9 ± 0.4Aa 36.9 ± 0.3Aa 19.9 ± 0.2Ba

10–20 21.1 ± 0.1ABa 33.9 ± 0.7Aa 29.6 ± 0.2Aa 27.5 ± 0.2Aa 15.2 ± 0.2Ba

20–40 16.9 ± 0.1ABa 24.9 ± 0.2Aa 30.6 ± 0.6Aa 21.3 ± 0.1ABa 15.4 ± 0.1Ba

40–70 13.4 ± 0.1Aa 18.7 ± 0.2Aa 20.4 ± 0.4Aa 19.5 ± 0.3Aa 12.9 ± 0.07Aa

70–100 15.5 ± 0.1Aa 14.6 ± 0.1Aa 14.8 ± 0.5Aa 21.0 ± 0.3Aa 12.7 ± 0.2Aa

STN (g kg−1)

0–10 2.8 ± 0.03ABa 2.2 ± 0.04Ba 2.9 ± 0.03Aa 2.8 ± 0.03ABa 1.5 ± 0.03Ba

10–20 2.1 ± 0.03Aa 2.1 ± 0.01Aa 2.3 ± 0.01Aa 2.3 ± 0.03Aa 1.6 ± 0.01Aa

20–40 1.9 ± 0.03Aa 1.7 ± 0.02Aa 1.7 ± 0.01Aa 1.9 ± 0.02Aa 1.3 ± 0.01Aa

40–70 1.0 ± 0.02Aa 1.4 ± 0.02Aa 1.1 ± 0.01Aa 1.9 ± 0.02Aa 1.2 ± 0.01Aa

70–100 1. 3 ± 0.02Aa 1.2 ± 0.02Aa 1.0 ± 0.01Aa 1.7 ± 0.01Aa 1.3 ± 0.02Aa

C:N ratio

0–10 13.5 ± 1.6Aa 21.1 ± 5.1Aa 14.1 ± 2.1Aa 14.7 ± 3.1Aa 17.9 ± 5.9Aa

10–20 11.2 ± 2.0Aa 15.9 ± 2.9Aa 13.0 ± 1.2Aa 13.8 ± 2.8Aa 9.6 ± 0.7Aa

20–40 9.7 ± 1.0Aa 17.0 ± 4.2Aa 19.5 ± 5.2Aa 12.1 ± 1.5Aa 12.2 ± 0.7Aa

40–70 13.8 ± 1.1Aa 14.7 ± 2.3Aa 19.1 ± 3.8Aa 9.9 ± 1.2Aa 10.7 ± 2.0Aa

70–100 13.0 ± 1.4Aa 12.3 ± 1.1Aa 16.7 ± 7.3Aa 13.5 ± 2.7Aa 11.2 ± 1.9Aa

Means followed by the same upper case letter(s) across rows and / or lower case letters within a column are not significantly different

Values are shown as mean ± standard error
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from shifting cultivation, a loss of 11.6 ± 0.2 Mg C
ha−1 yr.−1 in MCF was estimated.

Soil total nitrogen

There was no significant difference in STN contents (1.
0–2. 9 g kg−1) throughout soil layers, 0–10, 10–20, 20–
40, 40–70 and 70–100 cm across all the study sites
except that in 0–10 cm soil layer, STN content of SC-
5Y (2.9 ± 0.03 g kg−1) was significantly higher than
MCF (1.5 ± 0.03 g kg−1) (Table 3).

The STN stocks (0–100 cm soil layer) in SC-7Y
(21.9 ± 0.9 Mg N ha−1) were significantly (P < 0.05)
higher than NF (16.5 ± 0.8 Mg N ha−1), SC-3Y (16.9
± 0.4MgN ha−1) and SC-5Y (14.7 ± 0.9MgN ha−1) but
there were no significant differences in STN stocks
among NF, SC-3Y and SC-5Y (Table 4). The STN
stocks in MCF (12.1 ± 1.2 Mg N ha−1) were 26.7%
lower than NF, 28.4% lower than SC-3Y and 44.7%
lower than SC-7Y (P < 0.05) (Table 4). The STN stocks
in MCF were 17.7% lower than SC-5Y but the differ-
ence was not statistically significant (Table 4). The
difference of STN stocks between MCF and average
of SC-3Y, SC-5Yand SC-7Y was 6.0 ± 1.0 Mg N ha−1.
Since MCF has been cultivated over 10 years after
conversion from shifting cultivation, it is estimated that
loss of 0.6 ± 0.1 Mg N ha−1 yr.−1 in MCF.

Soil C:N ratio

C: N ratios ranged roughly from 10 to 20 across all the
sites and throughout soil layers and there were no sig-
nificant differences in C: N ratios (Table 3).

Discussion

Soil pH

There was no significant difference in soil pH across
natural forest and shifting cultivation areas. The results
indicate that conversion of natural forest to shifting
cultivation and following long-term practices of
shifting cultivation did not affect soil pH. The lack of
observed change of soil pH is different from previous
studies. A meta-analysis of Ribeiro Filho et al. (2015)
found that soil pH increased under shifting cultivations.
The increase of soil pH may be attributed to demobili-
zation of base cations (K+, Ca2+ and Mg2+) in burnt
vegetation and their incorporation into the soil with ash
(e.g., Nye and Greenland 1960) and the heating of the
superficial layer of the soil caused by the use of fire
(e.g., De Rouw 1994). It is hypothesized that that the
amount of demobilized basic cations from burnt bio-
mass was not large enough to affect soil pH in the
shifting cultivation areas.

Table 4 Soil organic carbon stocks (0–10, 0–20, 0–40, 0–70 and
0 − 100 cm; Mg C ha−1) and total nitrogen stocks (0–10, 0–20, 0–
40, 0–70 and 0 − 100 cm; Mg N h−1) in natural forest (NF),

shifting cultivation areas having three (SC-3Y), five (SC-5Y)
and seven (SC-7Y)-year-old fallowing and 10 year-old mono-
cropping field (MCF) converted from shifting cultivation

Soil Variable Soil layer (cm) Land use types

NF SC-3Y SC-5Y SC-7Y MCF

SOC stocks
(Mg C ha−1)

0–10 38.2 ± 1.4Ac 39.3 ± 3.9Ac 36.9 ± 3.9Ac 42.2 ± 3.5Ac 20.2 ± 1.7Be

0–20 62.0 ± 1.3Abc 75.6 ± 6.0Abc 67.5 ± 5.1Abc 72.5 ± 4.2Abc 35.3 ± 2.7Bde

0–40 98.1 ± 1.8ABabc 129.1 ± 10.7Aabc 130.1 ± 17.0Aab 119.8 ± 6.9Aabc 60.2 ± 3.9Bc

0–70 140.1 ± 2.5ABab 192.2 ± 12.3Aab 186.1 ± 24.5Aab 185.6 ± 12.9Aab 92.1 ± 6.2Bb

0–100 188.7 ± 4.7ABa 243.5 ± 14.2Aa 229.9 ± 36.1ABa 254.8 ± 15.6Aa 126.6 ± 8.9Ba

STN stocks
(Mg C ha−1)

0–10 2.9 ± 0.2Ae 2.3 ± 0.4ABe 2.8 ± 0.3Ae 3.1 ± 0.3Ac 1.5 ± 0.3Bc

0–20 5.4 ± 0.5Ad 4.5 ± 0.3ABd 5.2 ± 0.4Ad 5.6 ± 0.5Abc 3.1 ± 0.3Bbc

0–40 9.3 ± 0.4Ac 8.0 ± 0.6ABc 8.6 ± 0.4ABc 9.7 ± 0.8Aabc 5.4 ± 0.4Babc

0–70 12.5 ± 0.8Bb 12.6 ± 0.6Bb 11.7 ± 0.7BCb 16.3 ± 1.2Aab 8.7 ± 0.8Cab

0–100 16.5 ± 0.8Ba 16.9 ± 0.4Ba 14.7 ± 0.9BCa 21.9 ± 0.9Aa 12.1 ± 1.2Ca

Means followed by the same upper case letter(s) across rows and / or lower case letters within a column are not significantly different

Values are shown as mean ± standard error
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Soil pH in the converted mono-cropped field was
significantly lower than some of shifting cultivation
areas. It indicates that converting shifting cultivation to
mono-cropping decreased soil pH. The observed de-
crease of soil pH may be attributed to applied inorganic
fertilizer (urea and DAP) in the mono cropping fields
since NH4

+ ion and NO3
− anion from N-fertilizers are

likely to play roles in affecting acidification (e.g., Tian
and Niu 2015; Geisseler and Scow 2014; Lucas et al.
2011).

Soil texture

Soil texture was not significantly different across natural
forest, shifting cultivation areas and converted mono-
cropping fields. The results indicate that neither conver-
sion of natural forest to shifting cultivation, nor the
following conversion of shifting cultivation to mono-
cropping affected soil texture. However, those results
are different from major findings of previous studies. A
meta-analysis of Ribeiro Filho et al. (2013) found that
shifting cultivation resulted in the alteration of the fine
fraction due to repeated fire. It is hypothesized that fire
intensity might not be strong enough to affect soil tex-
ture in the shifting cultivation areas.

Soil bulk density

The study found that soil bulk densities were not signif-
icantly different or only slightly different across the
natural forest, shifting cultivation areas, and mono-
cropping fields. The results indicate that conversion of
natural forest to shifting cultivation and following long-
term practices of shifting cultivation did not affect soil
bulk density. Similarly, Osman et al. (2013) did not
show any considerable effect of shifting cultivation on
soil physical properties including water holding capac-
ity, bulk density, moisture content and particle density in
Bangladesh. The lack of change of soil bulk density
observed in the conversion from natural forest to
shifting cultivation is different from common findings
in shifting cultivation. Global meta-analyses of Ribeiro
Filho et al. (2013) and Mukul and Herbohn (2016)
found that soil bulk density was decreased by shifting
cultivation. The decrease in bulk density following
shifting cultivation can be can explained by the collapse
of the organo-mineral aggregates by fire (Giovannini
et al. 1988) and sealing due to the clogging of soil pores
by ash or the freed clay minerals (Durgin and Vogelsang

1984). Lack of change of soil bulk density observed in
the conversion of natural forest to shifting cultivation
can be explained by different hypotheses. First, no se-
vere fire-caused soil disturbance occurred in the shifting
cultivation. Repeated burning every 8 to 10 years may
not allow excessive fuel loads to accumulate and ac-
cordingly fire intensity may not be severe enough to
affect soil physical properties. Second, cultivation fol-
lowing fire did not affect soil bulk density. Local com-
munities cultivated the burned areas with minimum soil
disturbance (ex. open a small hole with a wooden stick)
and this practice might not disrupt soil structure and soil
macroaggregates affecting soil bulk density.

This study found that there was no or very little
change of soil bulk density in the conversion from
shifting cultivation to mono-cropping. The result is
different from common observation of altered soil
bulk density due to land-use changes. Global meta-
analyses (e.g., Shi et al. 2013; Don et al. 2011; Murty
et al. 2002) and studies conducted in Ethiopia (e.g.,
Wainkwa Chia et al. 2017; Yimer et al. 2007; Lemma
et al. 2006) commonly found an increase of soil bulk
density after a land use change from natural forest to
agricultural land (ex., 17% increase; Shi et al. 2013). It
is known that the increase of bulk density can be
attributed to soil disturbance and compaction due to
agricultural activities such as use of heavy machinery
and soil tilling (e.g., Shi et al. 2013; Don et al. 2011;
Murty et al. 2002). No, or very little change of soil
bulk density observed in this study suggests that ap-
plied tillage practices in the mono cropping fields
(traditional oxen ploughing with Bmaresha^ and com-
paction for weed control during sowing of teff) may
not affect soil bulk density.

Soil carbon and nitrogen

Soil organic carbon stocks (188Mg C ha−1 in 0–100 cm
layer) in natural forest in our study area were in the
range of SOC stocks in natural forests reported (127–
271MgC ha−1 in 0–100 cm layer) in previous Ethiopian
studies (Wainkwa Chia et al. 2017; Kim et al. 2016).
However, the stocks were higher than globe average
(113 Mg C ha−1; Sombroek et al. 1993) and average of
cool temperate wet forest (139 Mg C ha−1; Post et al.
1982).

Previous studies found that shifting cultivation sig-
nificantly affected soil carbon and nitrogen. Global
meta-analyses of Ribeiro Filho et al. (2015) and
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Mukul and Herbohn (2016) found that soil carbon and
nitrogen were significantly reduced under shifting cul-
tivation. This was mainly due to the volatilization of
SOM caused by fire, increased mineralization of SOM,
leaching, runoff and erosion during cultivation and
fallowing periods (Mukul and Herbohn 2016; Ribeiro
Filho et al. 2015). However, in this study there was no
significant difference in SOC and STN stocks between
natural forest and shifting cultivations. It is notable that
the observed higher STN stocks in one of shifting cul-
tivation sites compared to natural forest and other
shifting cultivation sites was caused by higher STN
contents in deep soil layers (40–100 cm) (Table 4).
Therefore, the observed higher STN stocks in one of
the shifting cultivation sites might be attributed to the
nature of the site rather than the effect of shifting culti-
vation. The results indicate that converting natural forest
to shifting cultivation and the following long-term
shifting cultivation practices did not affect SOC and
STN stocks in the study areas. Similarly, in Malaysia,
SOC stocks (0–90 cm soil layers) were not significantly
different between native forest and shifting cultivation
sites cultivating rice and pepper with 11–13 years of
fallow (Neergaard et al. 2008). We hypothesized the
potential reasons for the observed no change of SOC
and STN stocks: First, repeated fire in shifting cultiva-
tion might not be severe enough to affect SOC and STN.
Global meta-analyses by Nave et al. (2011), Boerner
et al. (2009), Wan et al. (2001) and Johnson and Curtis
(2001) found that prescribed fire did not have significant
overall effects on either SOC or STN, because pre-
scribed fires tend to be implemented under fairly low
fuel loads and favorable weather conditions (Nave et al.
2011). Similarly, a study conducted in a montane forest
in southern Ethiopia found that traditional fire manage-
ment, burning forest regularly, did not affect SOC and
STN stocks (Kim et al. 2016). Combustion of SOC
begins at 200 to 250 °C and is completed at around
460 °C (Giovannini et al. 1988). It is hypothesized that
the burned soils in the shifting cultivation might never
experience temperatures high enough for oxidation, thus
SOC and STN were not changed. It is suggested that
further study will consider investigating fire temperature
in the shifting cultivation. Second, applied cultivation
methods in the shifting cultivation might not affect SOC
and STN. Unlike modern conventional cultivation
methods, applied traditional cultivation methods in the
shifting cultivation, including no tillage, manual har-
vesting, and retaining crop residues, may not increase

decomposition of soil organic matter and prevent soil
erosion and run-off, resulting in no change of SOC and
STN. Third, 8 to 10 years of fallow might be long
enough to restore disturbed soil, and nutrients depleted
from organic matter from burning, and following one
year of cultivation, resulting in no change of SOC and
STN stocks in the study site.

The current study found that there was no significant
difference in SOC and STN stocks in different fallow
periods. Similarly, a few studies found no clear relation
between fallow length and soil carbon and nitrogen in
Myanmar (Chan et al. 2016), Malaysia (Bruun et al.
2006), Indonesia (Mertz et al. 2008) and Thailand
(Grange and Kansuntisukmongkol 2003). However,
some studies found soil carbon and nitrogen increased
with fallow length, in India (Sarkar et al. 2015),
Indonesia (Kleinman et al. 1996) and Laos (Roder
et al. 1995). It is hypothesized that the discrepancy
might be attributed to the different status of soil carbon
and nitrogen storage capacity in soil under fallow
(Sarkar et al. 2015). If soil under fallow is already
saturated with organic matter and remains in a steady
state of soil organic matter, soil carbon and nitrogenmay
not change with fallow length. This may be the case of
the current study as well as others (Chan et al. 2016;
Mertz et al. 2009; Bruun et al. 2006) showing no change
of soil carbon and nitrogen with fallow length.
However, if soil under fallow is unsaturated with organ-
ic matter, soil carbon and nitrogen increase with fallow
length due to newly added organic matter inputs from
litter and roots of growing vegetation, especially at
higher elevations and lower temperatures. This may be
the case of studies (Sarkar et al. 2015; Kleinman et al.
1996; Roder et al. 1995) showing an increase of soil
carbon and nitrogen with fallow length.

The study found that SOC and STN stocks in con-
verted mono-cropping fields were 45–50% and 18–45%
lower than shifting cultivation sites, respectively. The
results indicate that conversion of shifting cultivation to
conventional mono-cropping resulted in loss of SOC
(45–50% over 10 years; 11.6 ± 0.2 Mg C ha−1 yr.−1)
and STN stocks (18–45% over 10 years; 0.6 ±
0.1 Mg N ha−1 yr.−1). Similarly, global meta-analyses
and reviews (e.g., Dressler et al. 2017; van Vliet et al.
2012; Bruun et al. 2009) commonly reported that the
transition of shifting cultivations to conventional agri-
culture resulted in loss of soil carbon (13–40%; Bruun
et al. 2009) and soil fertility. There might be several
potential reasons on the loss of SOC and STN stocks in
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conversion of shifting cultivation to conventional mono-
cropping (e.g., van Vliet et al. 2012; Bruun et al. 2009).
First, loss of SOC and STN could happen since physical
disturbance of soil by tillage practices may increase
decomposition of organic matter including soil C and
N (e.g., McLauchlan 2006; Six et al. 2004; Murty et al.
2002). Second, removed perennial vegetation can result
in decreased soil inputs of organic matter from vegeta-
tion litter and roots (e.g., McLauchlan 2006; Six et al.
2004; Murty et al. 2002). Third, less vegetation cover
and use of conventional tillage in the converted mono-
cropping fields may increase wind and water erosion,
which can cause loss of soil C and N (e.g., Delgado et al.
2013; Wairiu and Lal 2003).

Observed loss of SOC stocks (45–50%) following
conversion of shifting cultivation to conventional mono-
cropping in this study was greater than other studies
(13–40%; Bruun et al. 2009). It may be attributed to
higher SOC stocks in shifting cultivation in this study
since it has been known that a natural forest having
higher SOC results in greater carbon loss in its conver-
sion to agricultural lands (e.g., Kim and Kirschbaum
2015; Don et al. 2011; Guo and Gifford 2002). Further
studies are required to identify major mechanisms and
quantify their contribution to the loss of SOC and STN
stocks in conversion of shifting cultivation to mono-
cropping.

Implications

In contrast to previous research, this study found that
long-term shifting cultivation did not affect soil pH, soil
texture, soil bulk density, and SOC and STN stocks. The
results suggest that the current perception of the nega-
tive impacts of shifting cultivation on soil properties,
including soil carbon and nutrients, should be re-visited.
More studies are required to assess impacts in different
regions and environmental conditions.

Losses of SOC and STN and decreased soil pH
following shifting cultivations to mono- cropping fields
have an implication for global climate change and local
livelihoods. Decreasing SOC and STN can increase
emissions of soil greenhouse gases (GHG) such as
carbon dioxide (CO2) and nitrous oxide (N2O) (e.g.,
Kim and Kirschbaum 2015; Snyder et al. 2009) and
contribute to global climate change. Decreased STN
and soil pH can result in another issue of degrading soil
fertility, potentially causing decreased crop yield in the
mono-cropped fields (e.g., Dressler et al. 2017; van

Vliet et al. 2012). More studies are urgently needed to
assess how increasing conversion of shifting cultivation
to mono-cropping in tropical areas affects soil carbon,
GHG emissions and nutrient and crop yields.

Conclusions

This study found that conversion of forest to shifting
cultivation did not affect SOC and STN stocks, but
conversion of shifting cultivations to mono-cropping
fields decreased both SOC and STN stocks. The results
suggest that in the study area, shifting cultivation main-
tains soil carbon and nitrogen, which are critical for
sustaining soil fertility and preventing global warming.
However, conversion of shifting cultivation to mono-
cropping can lead to depleting soil fertility and contrib-
uting to global warming. Further studies are recom-
mended to assess how shifting cultivation and its con-
version to mono-cropping affect soil carbon and nitro-
gen in different regions.
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