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ABSTRACT
Globally, belowground biomass (BGB) accounts for 20–26% of total biomass, and as such it
is an important carbon (C) pool for many vegetation types. However, large uncertainty exists
for belowground biomass C compared to aboveground stocks. Using data from 108 destruc-
tively harvested trees belonging to 36 miombo species, we estimated root to shoot ratios,
and developed models for estimation of aboveground biomass (AGB), BGB and total biomass
C stocks in the Copperbelt province of Zambia. We also validated our models using inde-
pendent datasets from elsewhere in Zambia and Malawi. The C fractions in wood ranged
between 51.9 and 58.9%, which was higher than the IPCC default value. The root to shoot
ratio was found to be 0.303. The analysis also demonstrated isometric scaling of BGB with
AGB. According to cross-validation results, the model that incorporated wood density (q),
diameter at breast height (D) and total stem height (H) formulated as AGB ¼0.093(qD2H)0.97�1.08 outperformed existing models developed for the miombo woodlands in Zambia. The
best model for BGB was BGB ¼ 0.476(AGB)0.88�1.126. Using the top-ranked models, the
stand-level AGB stocks were estimated at 222.2Mg ha�1, while BGB stocks were estimated
at 52.4Mg ha�1. Aboveground and belowground C stocks were 125.3Mg ha�1 and 29.5Mg
ha�1, respectively. Total biomass C stocks were estimated at 152.1Mg ha�1 or 558.3Mg
ha�1 CO2 equivalent sequestered in tree biomass. These estimates may be used as baseline
data for future carbon management and for emerging payment for ecosystem services proj-
ects in miombo woodlands.
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Highlights

� We developed models for aboveground (AGB)
and belowground (BGB) biomass of
miombo trees

� The best AGB model consisted of tree diameter,
height and wood density

� BGB was isometrically related to AGB
� We estimated carbon stocks at 125.3Mg ha�1

in AGB and 29.5Mg ha�1 in BGB
� Our models outperformed earlier models devel-

oped for miombo woodlands in Zambia

1. Introduction

The living biomass of the world’s forests contains
more than 40% of the global terrestrial carbon (C)
stocks [1]. Globally, belowground biomass (BGB) is
estimated to account for 20–26% of the total bio-
mass, and as such it is an important C pool for
many vegetation types and land-use systems.

However, belowground stocks are poorly esti-
mated and hence the potential of tropical forests
to mitigate climate change remains a major source
of uncertainty [2]. Therefore, accurate estimation
of belowground biomass is a critical component of
many applications, especially in quantifying C
stocks, sequestration rates [2, 3] and the global C
cycle [4]. The amount of biomass and C stocks dis-
tributed in different tree components is dependent
upon a number of factors such as tree species, flor-
istic composition and growth strategies within a
climatic zone [5], tree size and density [6] and geo-
graphic location [7]. Additionally, multiple human
induced pressures and demographic and land-use
changes [8, 9] have been reported to influence the
amount of biomass and C stock.

Miombo woodlands represent large and
dynamic vegetation landscapes across southern
Africa (Figure 1a) that play a critical role as reser-
voirs of biomass and C stocks [10]. Thus, they are

CONTACT Ferdinand Handavu fhandavu@yahoo.com Department of Geography, Environment and Climate Change, Mukuba University, P.O
Box 20382, Off Chingola Road, Kitwe 10101, Zambia.
� 2021 Informa UK Limited, trading as Taylor & Francis Group

CARBON MANAGEMENT
https://doi.org/10.1080/17583004.2021.1926330



considered an important element in the global cli-
mate change mitigation [11], and hence present
significant prospects for execution of emerging C
credit market mechanisms such as Reduced
Emissions from Deforestation and Forest
Degradation (REDDþ) strategies and policies [12,
13]. Furthermore, there is heightened interest in
understanding the capability of the miombo
woodlands to sequester C [14]. However, the key

to successful execution of REDDþ lies on develop-
ment of accurate C estimation models.

Miombo woodlands are characterised by high
heterogeneity [15] and diversity of tree species.
For example, there are approximately 8,500 species
of higher plants (of which 54% are endemic) in the
miombo woodlands [16], making them one of
the world’s high biodiversity hotspots [17]. Due to
the diversity of tree species and heterogeneity of

Figure 1. Coverage of the miombo woodlands [22] and the location of the study areas.
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environments, the applicability of species-specific
models is limited and their accuracy is question-
able in miombo woodlands.

Globally, patterns of distribution of AGB in ter-
restrial ecosystems are well understood. On the
other hand, large uncertainty exists for below-
ground biomass C [2]. For example, Robinson [2]
showed that the forest inventory-based estimates
of root C account for only 60%, indicating on aver-
age 40% underestimation of the root C pool across
forest types. This uncertainty is caused mainly by
incomplete sampling of roots and mass loss during
sample storage and preparation [2]. Excavations of
root systems of trees is not only difficulty but also
expensive. This creates not only information gaps
on the belowground contribution but also renders
the models inapplicable to new sites [18].

The majority of studies in Zambian miombo
woodlands have focused on species-specific
aboveground biomass models [14, 19], many of
which used generic pan-tropical models [20].
Information is scant on belowground biomass and
C storage in the miombo woodlands especially for
the Copperbelt region. Therefore, the main objec-
tives of this study were (i) to develop and validate
models for estimating AGB and BGB of the
miombo tree species and (ii) to estimate total bio-
mass and C stock in the Copperbelt region of
Zambia. We hypothesized that BGB can be accur-
ately estimated using allometric models involving
diameter (D) at breast height and AGB.

2. Materials and methods

2.1. Study area

The study was conducted in Katanino and
Miengwe forest reserves located in Masaiti District

(Figure 1). The two sites were chosen for two main
reasons, namely, (i) increasing land-cover changes
due to anthropogenic pressure over the last
32 years [21] and (ii) absence of information on
aboveground and belowground biomass and C
stocks for the area. The forest reserves are located
approximately 90 km, south of Ndola town along
the Ndola – Kapiri-Mposhi road. Katanino forest
reserve lies between 13� 250 00" and 13� 450 00"S
and 28� 250 00" and 28� 400 00"E at an altitude of
1200m. The forest covers an estimated area of
4,532 hectares [21]. Miengwe Forest reserve lies
between latitude 13� 240 05"S and longitude 28�

490 00"E, with a gross area of 8, 094 hectares.
The forest areas occur on Katanga rock system.

The area receives rainfall averaging 1200mm per
annum and experiences three seasons; hot dry
(September-November), rainy season (December
–March) and cold dry season (April-August) [22].
The most common soil type is the residual lateritic
soil comprising mostly silty clays to silty sands. The
major vegetation of the study areas is wet
miombo. It is a single tree-storey woodland with a
light, closed canopy miombo woodlands, charac-
terised by the dominance of Papilionacae and
Fabaceae, especially of the genera Brachystegia (B.
spiciformis, B. longifolia), Julbernardia (J. globiflora,
J. paniculata), and Isoberlinia angolensis.

2.2. Sampling method

For each study site, grid system based on X and Y
coordinates of 250m by 250m quadrants were
superimposed on the vegetation map to give the
potential number of grid intersection points from
which sampling points were randomly selected by
the first author. A total of 112 circular sample plots
of 20m radius (92 in Miengwe and 20 in Katanino)
were generated. Prior to undertaking destructive
sampling, data from a total of 112 sample plots
were analysed to define vegetation communities
using TWINSPAN for Windows version 23 [23].
TWINSPAN analysis is a numerical method for con-
structing a classification of sample plots and uses
this classification to obtain a classification of spe-
cies according to their ecological preferences,
allowing the determination of homogenous plant
community groups [16, 23]. A total of 18 homo-
genous clusters yielding 63 sample plots were
obtained. Based on the vegetation data from the
63 sample plots, we conducted an excel-based
simple random sampling method to select tree
species from each representative cluster for

Table 1. Estimates of tree density, basal area, diameter,
height, wood density, root to shoot ratio, plant C
content, AGB, BGB and C stocks for the study area.
Variables Range Mean 95% CL†

Tree density (trees ha-1) 103-684 508.9 481.6-537.4
Basal area (m2 ha-1) 0.9-136.3 23.6 18.9-27.9
Diameter (cm) 5-52.2 22.2 20.2-24.2
Total height (m) 4.2-22.8 12.8 11.9-13.6
Wood density (g cm-3) 0.42-0.86 0.61 0.60-0.63
Root to shoot ratio 0.15-0.82 0.30 0.21-0.40
C content (%) 51.9-57.6 56.4 56.2-56.6
Measured AGB (kg tree-1) 7.8-2374.4 440.0 330.8-537.8
Modelled AGB (kg tree-1) 5.5-2405.2 446.3 346.5-537.2
Measured BGB (kg tree-1) 2.8-246.8 53.5 21.6-78.8
Modelled BGB (kg tree-1) 6.0-196.6 54.7 27.8-78.3
Measured AGB (Mg ha-1) 4.1-1511.6 217.1 160.8-268.4
Best estimate of AGB (Mg ha-1)‡ 2.4-1295.1 222.2 168.9-269.4
Best estimate of BGB (Mg ha-1) 1.7-317.5 52.4 40.2-63.3
Best estimate of AGBC (Mg ha-1) 1.4-730.5 125.3 95.1-152.7
Best estimate of BGBC (Mg ha-1) 0.9-179.1 29.5 22.8-35.6
†The 95% CL were produced using 9999 bootstrap replicates.
‡The best estimate is the value derived using the best model.
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destructive sampling. A total of 108 individual
trees (95 at Miengwe and 13 in Katanino) belong-
ing to 36 species (Supplementary Table S1) across
a range of trunk diameters (5–52 cm) (Table 1)
were randomly selected and harvested. Total
height (H) of the sample trees ranged between 4.2
and 22.8m (Supplementary Figure S1), while diam-
eter (D) at breast height ranged between 5 and
52.2 cm (Table 1). We then estimated basal area as
the sum of cross-sectional area measured at breast
height (1.3m) of all trees in a stand (in m2 ha�1).
Accordingly, the stem basal area for the study sites
was estimated at 23.6m2 ha�1 (Table 1). Tree dens-
ity was estimated from a total of 63 plots by com-
plete enumeration. Accordingly, density was
estimated at 508 trees ha�1 (Table 1).

All the selected trees were identified to the spe-
cies level, their diameters (D) were measured at
breast height in cm) and total tree height (in m).
The diameters were determined over-bark to the
nearest 0.1 cm, with the diameter tape held horizon-
tally and tightly at the stem. Total tree height of
felled trees was measured using 50 metres measur-
ing tape. The total number of trees destructively
harvested is much higher than what Kachamba et al
[11] (n¼ 74 trees) used for developing aboveground
and belowground biomass models. The sample size
is also twice the minimum number of 50 trees [24].

The selected trees were cut at the base approxi-
mately 15 cm aboveground using a chainsaw, and
separated into trunk (from stump at 20 cm above-
ground to the first point where the first branches
start), branches (all portions of the tree above the
defined bole stem up to a minimum diameter of
2.5 cm) and twigs and leaves (all branches with
diameter below 2.5 cm). All felled trees were cut
into segments of 1.0–1.5m lengths and weighed
for fresh weight using a solar powered digital
END-T3 flatbed weighing indicator (model YH-T3
multifunctional weighing indicator) with 600 kg
capacity and a precision of 0.01 kg. In order to
account for loss in form of sawdust during cross-
cutting of billets, all diameters at points of cross-
cutting were measured to calculate the cumulative
losses. Sub-samples of wood discs and twigs and
leaves were obtained and their fresh weights
determined using a 6000 g capacity precision bal-
ance (Model THB 6000) (precision 0.001 g).

For determination of belowground biomass, the
entire root system of individual trees was exca-
vated manually. The first step of excavation
involved clearing the topsoil around the tree base
to expose all roots initiating from the root crown.

The roots were classified as root crown, main roots
(all roots branching from the root crown) and side
roots (roots branching from the side roots). All
roots were followed until they tapered to � 2mm
in diameter. In all, 18 of the destructively har-
vested individuals (representing 13 trees species)
were excavated to provide data on root biomass
and determination of root:shoot ratio.

Fresh samples of three discs were taken from
trunk base, larger branches and small branches to
account for possible variation in wood density. The
discs were oven dried and, submerged in water for
48 h to reach saturation point prior to undertaking
volume measurements [25]. Due to the irregular
nature of sample discs, volume was determined by
water displacement method [19] using graduated
cylinders. Sample volume was taken as the amount
of water displaced. The sample specimens were
then oven-dried to a constant weight at 105 �C (for
samples of stems and branches) [26] and 60.5 �C
(twigs and leaves) for 48 h at the Zambia Forestry
College Laboratory and subsequently weighed
using a precision scale to 0.001 g. The sub-sample
dry and fresh weights were used to determine the
tree specific dry to fresh weights ratios (DF-ratios)
which were used to convert measured fresh tree
mass in the field to dry weight biomass [27]. The
average wood density (g cm�3) per sample tree
was calculated as oven-dry divided by volume at
saturation point [4].

Oven-dried sample components (stem, branch
and twigs and leaves) of each of the harvested
trees were ground into fine powder for analysing
the C fractions at the Mt Makuru Agriculture
Research Institute. The fine powder was then
sieved through 1mm sieve. The percentage of C
for each sample was determined using loss on
ignition method adopted from Ullah and Al-Amin
[28]. In this method oven-dried ground powder
samples (1.0 g) were put in pre-weighted crucibles
which were ignited in the muffle furnace at 550 �C
for 2:30 hrs. The crucibles were cooled slowly in
the furnace after which they were weighted with
ash. The ash and organic carbon percentages were
calculated according to Bezezew et al., [29] (Eqs 1).

Ash %ð Þ ¼ W3�W1
W2�W1

x100 (1)

C (%) ¼ (100 � %Ash) � 0.58 (considering 58%
carbon in ash-free litter material) where C is the
organic carbon [29]; W1 the weight of crucibles;
W2 the weight of oven dried ground samples cru-
cibles; W3 is the weight of ashþ crucibles.

4 F. HANDAVU ET AL.



2.3. Statistical analysis

2.3.1. Development of models
Allometric relationships between D, H and q and
tree biomass (AGB and BGB) were tested by fitting
linear regression equations [24]. Before fitting
equations, each variable was transformed into nat-
ural logarithm (ln) to ensure linearity, normality
and homoscedasticity [24]. The allometric parame-
ters were estimated using ordinary least square
(OLS) regression. Empirical slopes (b) of the allo-
metric relationships were compared with theoret-
ical values, and differences were declared
significant when the 95% confidence limits (CL) of
the empirical estimates do not encompass theoret-
ical values.

Several mathematical forms have been applied
in developing models [30, 31]. In this study, the
following general model formulations were chosen
for aboveground biomass (AGB) and belowground
biomass (BGB) used as independent variables and
diameter (D) at breast height in cm), total tree
height (H in m) and wood density (q in g cm�3) as
the dependent variables.

Models for AGB

Model 1 : ln AGBð Þ ¼ lnðaÞ þ b lnðDÞ þ e

(2)
Model 2 : ln AGBð Þ

¼ lnðaÞ þ b lnðDÞ þ c lnðqÞ þ e

(3)
Model 3 : ln AGBð Þ

¼ lnðaÞ þ b lnðDÞ þ c lnðHÞ þ e

(4)
Model 4 : ln AGBð Þ

¼ lnðaÞ þ b lnðDÞ þ c lnðHÞ
þ d lnðqÞ þ e (5)

Model 5 : ln AGBð Þ ¼ lnðaÞ þ b ln qD2H
� �

þ e

(6)

Models for BGB

Model 6 : ln BGBð Þ ¼ lnðaÞ þ b lnðDÞ þ e

(7)
Model 7 : ln BGBð Þ ¼ lnðaÞ þ blnðDÞ þ clnðqÞ þ e

(8)
Model 8 : ln BGBð Þ

¼ ln ðaÞ þ b ln ðDÞ þ c ln ðHÞ þ e (9)

Model 9 : ln BGBð Þ
¼ ln ðaÞ þ b ln AGBð Þ þ e (10)

Model 10 : ln BGBð Þ
¼ ln ðaÞ þ b ln qD2H

� �
þ e (11)

where AGB¼ total aboveground biomass (kg/tree);
BGB¼belowground biomass; D¼diameter at
breast height; H¼ tree height. Variables a, b, c,
and d, are model parameters. “ln” is the natural
logarithm and e is a random error with a mean ¼
0 and variance¼Ve.

Model 9 was included in the comparison
because of the empirical allometric relationship
observed between BGB and AGB [32, 33]. Models
1–10 were then compared with the following exist-
ing models developed for AGB in a dry miombo
woodland in Zambia [28, 34] and BGB in
Malawi [11].

Aboveground biomass

Chidumayo 2013að Þ AGB ¼ 0:045ðDÞ2:765 (12)

Chidumayo 2014ð Þ AGB ¼ 0:0799ðDÞ2:535
(13)

Belowground biomass

Chidumayo 2014ð Þ ln ðBGBÞ
¼ �1:944þ 2:171 � lnðDÞ (13)

Kachambaet al 2016ð ÞBGB ¼ 0:285ðDÞ1:993 (14)

Chidumayo’s and Kachamba et al. models were
chosen because they were developed and tested
for similar miombo woodland sites, and therefore
are more relevant than the generic pan-tropical
models such those published by [30].

2.3.2. Model selection and validation
There are a number of model selection criteria in
the literature [25]. In this study, we chose the root
mean square of error (RMSE), the mean percentage
error (MPE), Akaike Information Criterion (AIC) and
Akaike Information Criterion weights (AICw) [25].
The model having the highest R2, lowest RMSE,
AIC and highest AICw was selected as the best
model for the data. The AICw represents the rela-
tive likelihood of a model given the data. A model
whose AICw approaches 1 is said to be unambigu-
ously supported by the data [32]. The mean per-
centage error (MPE%), sometimes referred to as
relative error or error of prediction [25] was calcu-
lated as:

MPE% ¼ 100
n

x
Xn

i¼1

yp�y0
y0

� �
(15)

where n is the number of trees, yp is the predicted
biomass from model, y0 is the observed biomass in
field measurements.

The RMSE, which is a function of both bias and
precision, is a measure of accuracy of predictions
[35]. When computing RMSE and MPE%, the
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predicted values were back-transformed to the ori-
ginal unit after correction for regression error.
Upon back-transformation, all predicted values
were multiplied by a correction factor (CF) calcu-
lated as CF¼ exp(1=2MSE)2. This was necessary to
minimise the systematic bias introduced during
the back transformation of log-transformed val-
ues [36].

The steps taken above only assess the ability
of a model to describe the data at hand (or in-
sample fit). However, models usually have a
grossly inflated performance in-sample compared
to their performance in follow-up studies, a phe-
nomenon known as the winner’s curse [37, 38] in
the statistics literature. Therefore, our focus here
was to assess the predictive power (out-of-sample
fit) of our top-ranked model. Therefore, we vali-
dated our AGB and BGB models using two inde-
pendent datasets. The first dataset consisted of
141 measurements of AGB, D, H and q from
Zambia, which we obtained from the supplemen-
tary online material of Chave et al. [30]. We used
this dataset to validate our top-ranked AGB
model by regressing the measured AGB against
the AGB predicted by our top ranked model,
Chidumayo’s model and an empirical model
derived from the data as prescribed in Sileshi
[25]. The second dataset consisted of 41 AGB and
corresponding BGB measurements of miombo
woodland trees from Malawi in Kachamba
et al. [11].

We also cross-validated our AGB and BGB mod-
els using the K-fold cross-validation method. This
method takes K replicate samples of the data, each
one using (K-1)/K of the data to build the model
and the remaining 1/K of the data to test the
model. We undertook the cross-validation with
macros written in the SAS system and the proced-
ure PROC SURVEYSELECT to generate the samples
and the PROC REG to fits our model and generate
cross-validation criteria. We used the R2, RMSE and
the mean absolute error (MAE), two of the popular
measures of model performance in cross-valid-
ation, to compare the different models. In the
arithmetic scale, the RMSE is more sensitive to
occasional large errors as the squaring process
gives disproportionate weight to very large errors.
Therefore, we did all cross-validation on the log-
transformed data because we did not want large
errors to be significantly more penalized than
small ones. MAE measures the average prediction
error in a set of predictions, without considering
the direction of errors.

2.3.3. Quantifying aboveground and belowground
carbon at stand level
First, the best fit model was applied to the pooled
inventory data to estimate AGB or BGB at the tree
level [39]. Then the biomass estimates were con-
verted to C stock using the mean tree C % value
of 56.4%. Since wood density was only determined
for the destructively sampled trees, the missing
wood density values were filled using average
genus wood density values [40]. Lastly, tree bio-
mass and C stocks were calculated for the stand
level (in Mg ha�1) by multiplying the AGB (kg per
tree) by the tree density per ha�1 and dividing by
1000. The amount of CO2 equivalent sequestered
in the total tree biomass was estimated by multi-
plying the sum of AGBC and BGBC by the CO2 to C
ratio of 3.67 [41].

Finally, we estimated the 95% confidence inter-
vals (CIs) using bootstrapping. Traditionally, CIs are
obtained from a parametric estimator of the stand-
ard errors (SE) of a statistic, and then the lower
and upper 95% CLs are obtained by adding ± SE
multiplied by 1.96, which is the critical value of the
t distribution [42]. This calculation assumes that
the estimator is approximately normally distrib-
uted. Bootstrapping was proposed as a non-para-
metric alternative for determining the SE of any
statistic [43]. Bootstrapping involves drawing inde-
pendent samples from the data and calculating
the target statistic on each draw. It then uses the
resulting empirical distribution to obtain an esti-
mate of the SE. The advantage of bootstrapping is
that the estimated CIs are robust when the under-
lying population value doesn’t conform to the
traditional assumptions of normality and asymp-
totic theory used to derive the SE [43]. Therefore,
we obtained the 95% CIs of tree density, basal
area, diameter, height, wood density, root to shoot
ratio, plant C content, AGB and BGB using 1999
bootstrap replicates. We used 95% CIs because
they provide the uncertainty around estimated val-
ues. For the model predicted AGB and BGB, we
also calculated a relative measure of error here-
after referred to as RMSE% calculated as a ratio of
RMSE to the mean of the predicted biomass and
expressed in %, i.e. 100�(RMSE/mean). The RMSE%
gives an estimate of the error in estimation as a
percentage of the predicted mean biomass [44].

We estimated total tree biomass by combining
AGB and BGB in a simultaneous equation. To guar-
antee the additivity property of the tree biomass
equations, we used nonlinear seemingly unrelated
regression (NSUR) [44, 45] implemented via the

6 F. HANDAVU ET AL.



MODEL procedure of the SAS system. This simul-
taneous equation incorporated models 5 and 9.

3. Results

3.1. Population structure and size distribution

Populations of the sampled vegetation all exhibited
an inverse-J shape of size structure for both diameter
and height, with proportionally highest frequency of

small plants (in the diameter class 5–9.9 cm) relative
to the larger ones. This signifies that the vegetation
in the study sites is stable and that the young plants
are ready to replace older ones. There are no signifi-
cant differences in species composition between the
Katanino and Miengwe forest reserves as both
belong to the wet miombo. With 12 and 10 individu-
als, Julbernardia paniculata and Brachystegia longifolia
were the most dominant species in the sample trees,
followed by Isoberlinia angolensis and Brachystegia

Figure 2. Diameter and height distribution (a & b) and the relationships between stem height and diameter at breast
height (c), diameter and aboveground biomass (AGB) (d), AGB biomass and stem height (e) and AGB biomass and wood
density (f) in the logarithmic domain. The dashed line in (a) and (b) represent the inverse J-shaped trend in size distribu-
tion following an exponential function.
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spiciformis (Supplementary Table S1). A total of 15
species (41.2% of the sampled species) were repre-
sented by only one individual, while 4 species were
represented by 2 individuals (Supplementary Table
S1). The diameter and basal area distribution of the
sample trees revealed an inverse J-shaped size class
distribution (Figure 2a and b). The most dominant
species (J. paniculate) was represented in all size
classes (Supplementary Figure S1) although the sam-
ple size is small to make conclusions about its size
frequency distribution.

3.2. Allometric scaling between variables

Figure 2 presents the allometric scaling relation-
ships between H, D and AGB. The empirical slope
(b) of the H-D scaling (b¼ 0.63; CL: 0.55–0.71) was
not significantly different from theoretical value of
0.67. The empirical slope of the AGB-D scaling
(b¼ 2.59; CL: 2.41–2.77) was also not significantly
different from the theoretical values of 2.75. AGB
isometrically scaled with H, and the empirical slope
(b¼ 3.15; CL: 2.81–3.50) was not significantly differ-
ent from the theoretical slope (b¼ 3) under geo-
metric similarity. Similarly, the empirical slope of
the BGB-AGB scaling (b¼ 0.88; CL: 0.68–1.07) was
not significantly different from the theoretical
value of 1 for isometric scaling of belowground
biomass with aboveground biomass.

3.3. Wood density and carbon content

Estimated wood density was in the range of 0.42
and 0.86 g cm�3 with a mean of 0.61 g cm�3

(Table 1). The highest values were recorded in
Dalbergiella nyasae (0.82 g cm�3) followed by
Erythrophleum africanum (0.79 g cm�3) and
Combretum collinum (0.77 g cm�3), while the low-
est was in Ficus capensis (0.30 g cm�3). The C con-
tent of the woody tree components was in the

range of 51.9 and 58.9% with a mean of 56.4%
(Table 1). Species-specific variation in C concentra-
tion was also observed in individual tree species
(data not shown).

3.4. The root: shoot ratios

The mean root to shoot ratio of the 18 individuals
excavated was 0.30 (95% CL: 0.21–0.40 (Table 1).
Significant correlation could not be established
between stem diameter and root to shoot ratio
although a trend in decrease was noted with
increase in stem diameter.

3.5. Estimation of AGB and BGB

Parameters estimates of the various models tested
for AGB and BGB are summarized in Table 2.
Among the AGB models compared, in terms of
AIC, Model 5 had the highest support by the data
(Table 2). In terms of RMSE, this model also per-
formed better than the two existing models devel-
oped by Chidumayo for miombo woodland trees
(Table 3). Chidumayo’s models tended to have
larger margins of error (%RSE ¼ 40–60%) in the
diameter ranges above 10 cm, while our models
tended to have <40% error, decreasing with
increase in tree diameter (Figure 4c). The existing
models systematically underestimated AGB across
D ranges (Figure 3a). For the validation dataset
from Zambia, our best AGB model (i.e. Model 5)
was also better than the empirical model and
Chidumayo’s model as indicated by the higher R2

and lower RMSE and AICc criteria.
In the BGB validation data from Malawi, our

best model (Model 9) was better than the empir-
ical model, but inferior to Chidumayo’s and
Kachamba et al. models in terms of AICc. Our
model tended to underestimate BGB by 36%, while
Kachamba et al. model overestimated BGB by 20%

Table 2. Parameter estimates and cross-validation criteria for comparing the various models tested for above- and
below-ground tree biomass in the miombo woodlands of the Copperbelt in Zambia.

Parameter estimates Cross-validation criteria

No Model a b c d CF R2(%) RMSE MAE

ln(ABG) ¼
1 ln(a)þbln(D) �2.42 ± 0.28 2.59 ± 0.09 1.12 95.0 0.438 0.301
2 ln(a)þbln(D)þc ln(q) �1.71 ± 0.35 2.53 ± 0.09 1.06 ± 0.33 1.11 94.9 0.444 0.301
3 ln(a)þbln(D)þc ln (H) �3.10 ± 0.27 1.93 ± 0.14 1.07 ± 0.18 1.09 95.5 0.418 0.266
4 ln(a)þbln(D)þcln(H)þdln(q) �2.49 ± 0.34 1.92 ± 0.14 1.00 ± 0.18 0.84 ± 0.29 1.08 95.7 0.409 0.263
5 ln(a)þbln(qD2H) �2.38 ± 0.23 0.97 ± 0.03 1.08 96.4 0.370 0.255

ln(BGB) ¼
6 ln(a)þbln(D) �3.63 ± 0.85 2.52 ± 0.30 1.14 89.9 0.544 0.456
7 ln(a)þbln(D)þcln (q) �3.55 ± 1.16 2.51 ± 0.32 0.12 ± 1.08 1.15 88.8 0.570 0.483
8 ln(a)þbln(D)þcln (H) �3.85 ± 0.92 2.24 ± 0.47 0.43 ± 0.57 1.14 87.2 0.596 0.463
9 ln(a)þbln(AGB) �0.74 ± 0.49 0.88 ± 0.10 1.13 91.6 0.496 0.414
10 ln (a)þbln(qD2H) �3.30 ± 0.82 0.90 ± 0.11 1.14 88.8 0.562 0.443

Figures in parentheses represent standard errors of parameters.
Figures in bold face represent the top-ranked model.
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(Table 4). However, Chidumayo’s and Kachamba
et al. models tended to systematically overestimate
BGB (Figure 4b). All models had large errors of pre-
diction (%RMSE > 40%) of BGB for trees with
diameter <10 cm. While our models tended to
have <30% error in the diameter ranges of
10–20 cm, the errors with Chidumayo’s and
Kachamba et al. models were > 40% of BGB
(Figure 4d).

3.6. AGB, BGB and C stocks

We estimated the stand-level AGB, BGB and C
stocks for the pooled inventory data using our top
ranked model (Table 1). Our best estimate of AGB
was 222.2Mg ha�1 was very close to our value of
217.1Mg ha�1 calculated from the measured trees
(Table 1). Accordingly, the C stocks in AGB were
estimated at 125.3Mg C ha�1. BGB was isometric-
ally related to AGB, and the best model: BGB ¼
0.476(AGB)0.88�1.126 was applied to estimate BGB
stocks. Accordingly, the estimated BGB stocks were
52.4Mg ha�1 which translated into BGB C stocks
of 29.5Mg C ha�1 (Table 1). Using NSUR total tree
biomass was estimated at 270.1Mg ha�1 (95% CL:
207.4–328.7Mg ha�1) giving C stocks estimated at
152.1Mg ha�1 (95% CL: 115.9–184.1Mg ha�1). In
terms of the amount of CO2 sequestered in tree
biomass, this translates to 558.3Mg ha�1 CO2 eq.

4. Discussion

The miombo is often known to be dominated by a
few species. On the study site J. paniculata and B.
longifolia, I. angolensis and Brachystegia spiciformis
were the most dominant species. These are also
the species ranked high in terms of the
Importance Values Index in miombo woodlands in
the Copper Belt [46]. The size distribution of the
sampled tree species conformed to the classical

inverse J-shaped curve, where a large number of
young trees continue to regenerate under the can-
opies of fewer large and mature trees. The inverse
J-shaped curve is an indication of a steady and
self-maintaining population, in which young trees
will steadily replace the older trees. Kalaba et al.
[46] cite a number of other studies in the Miombo
woodlands that have reported similar size class
distributions. The ability of the Miombo species to
regenerate from coppices regrowth and root suck-
ers [46] also indicates potential for woodland
recovery after disturbances. The fact that the most
dominant species (J. paniculata) is represented in
all size classes means that it is likely to maintain its
population without significant shift in car-
bon management.

Although tropical forests hold a great potential
for C storage in tree biomass, quantifying their
contribution to C storage has been challenging
because of the difficulty in estimating BGB. This
study has provided evidence for isometric scaling
of BGB with AGB in miombo woodland species
consistent with allometric theory [32, 33]. This pro-
vides opportunities for estimating BGB directly
from AGB using allometric models, and avoid the
need for root excavation. When estimating tree
biomass, wood density is an important variable
which is central to the accounting of C sequestra-
tion in forests. However, wood density may
depend on a range of intrinsic or environmental
factors such as species, age, climate, geographical
location [31]. In this study, we have demonstrated
variability in wood density. The average wood
density found in this study is within the range of
values (0.58–0.67 g cm�3) reported for trees in
other parts of Africa [30, 31].

Plant C content is one of the most important
traits, and it is critical for assessing global C cycle
[47]. Usually, a default value of 50% is used when
converting biomass into C estimates [48]. Our 95%

Table 3. Models expressed in the arithmetic domain and compared using the estimated biomass (in kg tree�1) root
mean-square of error (RMSE in kg tree�1), RMSE expressed as a percentage of the mean (%RMSE) and mean percentage
error (MPE in %).

Model No Model form Biomass RMSE %RMSE MPE

AGB 1 AGB ¼ 0:088ðDÞ2:59�1:12 448.1 171.5 38.3 20.8
2 AGB ¼ 0:180ðDÞ2:53�q1:06�1:11 442.3 165.7 37.5 19.8
3 AGB ¼ 0.045 (D)1.93�(H)1.07 �1.09 442.1 152.2 34.4 16.6
4 AGB ¼ 0.083(D)1.92�(H)0.999 �(q)0.84�1.08 428.5 167.0 39.0 13.5
5 AGB ¼ 0.093(qD2H)0.97�1:08 446.3 166.1 37.2 17.8
Chidumayo1 AGB ¼0.0446(D)2.765 372.9 186.9 50.1 �7.9
Chidumayo2 AGB ¼0.0799(D)2.535 319.5 248.2 77.7 �12.2

BGB 6 BGB ¼ 0:026ðDÞ2:52�1.14 54.2 19.8 36.5 34.6
7 BGB ¼ 0:029ðDÞ2:51�ðqÞ1�32�1.15 57.9 19.3 33.4 26.0
8 BGB ¼ 0:021ðDÞ2:24�ðHÞ0:43�1.14 53.9 19.9 36.9 24.5
9 BGB ¼ 0:476ðAGBÞ0:88�1.13 54.7 18.5 33.9 23.9
10 BGB ¼ 0.037(qD2H)0.90�1:14 52.8 22.0 41.7 24.1
Chidumayo BGB ¼0.143�(D)2.171 87.9 42.7 48.6 132.9
Kachamba et al. AGB ¼0.285(D)1.993 100.6 55.5 55.1 186.0

CARBON MANAGEMENT 9



CL (51.9–58.9%) indicates that the C content is
much higher than this default value and values
reported in other studies. Ngoma et al. [19]
reported a rage of 34–53% for the Zambezi teak
forest in Western Zambia. At global level, values of
45–47.9% [49], 47–49% [47] and 48.4–51% [50]
have been reported. We have demonstrated here
significant variability in C concentrations.
Therefore, using the default value of 50% as bio-
mass C conversion factor may ignore the high vari-
ability in C content [51] and hence lead to biased
estimates of C stocks.

The mean root to shoot ratios of the 18 exca-
vated individual trees was within the range of val-
ues (0.25–0.75) reported in miombo woodlands of
Tanzania [52] and Central Africa [53]. However, our
values are much lower than values reported in
other studies; for example, 0.38–0.62 in Zambia
[19], 0.40–0.60 in Tanzania, [13], 0.42–0.58 in
Mozambique, [54] and 0.25–0.9 in Malawi [11].

Studies elsewhere attributed the difference in root
to shoot ration differences in tree roots architec-
ture, tree species, soil depths, sampling methods
and soil characteristics [53]. With regard to root
sampling methods, our study involved complete
excavation of the entire root system of target tree
species whereas, other researchers [11, 13, 28]
undertook root sampling.

Of the five models tested in this study, the
model that included diameter, height and wood
density as predictors provided the best out-of-sam-
ple fit. Our results are consistent with [54] and [4]
who observed that incorporation of these variables
resulted in the lowest uncertainty. In the validation
using independent samples, this model also out-
performed earlier models [28, 34] developed for
miombo woodlands. The model by Chidumayo
generally tended to underestimate AGB. This is
partly due to the omission of the correction factor
in the models by Chidumayo [28, 34]. Inclusion of

Figure 3. Top-ranked aboveground biomass (AGB) and belowground biomass (BGB) models and the distribution of the
standardized residuals. The Shapiro-Wilk test for normality of residuals for the AGB model was significant (p< 0.001),
while for the BGB model it was not significant (p¼ 0.3858).
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the correction factor is a requisite when back-
transforming data because its omission leads to a
downward bias in predicted values [55].

Our results confirm that models formulated in
the form of our Model 5 provide an acceptable
approximation of AGB in the miombo woodland
species. This model was also found to be superior
in our data as well as the validation dataset from

Zambia. Our results are consistent with other stud-
ies which demonstrated that multi-species allomet-
ric models using a combination of pD2H as
identical predictor variables result in accurate
aboveground biomass estimation [30]. However,
Kachamba et al. [11], in their study of Malawian
miombo noted that inclusion of q as independent
variable did not improve biomass prediction. This

Table 4. Performance of our best model in comparison to existing models in independent validation
datasets from Zambia and Malawi.
Variable Validation data Model R2 MPE RMSE AICc

AGB (N¼ 141) Zambia Our best (Model 5) 0.953 18.3 27.8 941.6
Zambia Chidumayo’s 0.926 �14.1 34.8 1005.4

BGB (N¼ 41) Malawi Our best (Model 9) 0.939 �36.7 166.3 423.9
Malawi Chidumayo’s 0.945 8.7 158.8 420.1
Malawi Kachemba’s 0.953 20.3 145.7 413.1

Figure 4. Comparison of predictions by our best model with existing models of aboveground biomass (AGB) and below-
ground biomass (BGB) proposed by Chidumayo and Kachemba for miombo woodland trees (a and b) and the error of pre-
diction (RMSE) expressed as a percentage of the mean (c) of AGB and BGB.
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may be attributed to fact that wood density values
were not obtained from their study sites but
extracted from the global wood density database.
Therefore, we recommend that our Model 5 be
used for estimation of AGB in preference to the
model proposed by Chidumayo et al. [28].

Our best BGB model was the one where AGB
was used as the only predictor. This is consistent
with earlier global analyses that show isometric
scaling between aboveground and belowground
dry biomass across phyletically and ecologically
diverse species [32]. Allometric theory also predicts
that AGB and BGB scale is in a near isometric man-
ner across diverse forest-types, regardless of vege-
tation composition [32, 33]. This implies that once
AGB is accurately quantified, BGB can be estimated
from AGB more accurately than using other den-
drometric measurements such as height and stem
diameter. Our model was also superior to existing
BGB models proposed by Chidumayo [34] and
Kachamba et al. [11] for miombo woodland spe-
cies. The existing models tended to overestimate
BGB relative to our model across all diameter sizes
(Figure 3).

Our basal area estimate of 23.6m2 ha�1 (95%
CL: 18.9–27.9 m2 ha�1) is within the values
reported for the miombo [56–58]. According to a
comprehensive review earlier studies in the
miombo woodlands by Frost [56] most stands
have basal area of 7–22m2 ha�1. Higher values
(59–117m2 ha�1) have also been recorded in small
plots in Zambia [56]. Stand basal area provides an
index of both the harvestable volume, above-
ground woody biomass and carbon stocks since it
integrates the effect of both the number and size
of trees [56, 59].

Our estimates of AGB (222.2Mg ha�1) are higher
than values reported in other studies in the
miombo. In Zambia, Kalaba et al. [20] reported
79.2Mg ha�1 AGB and 39.6Mg C ha�1, while
Chidumayo [28] reported an average of 123.4Mg
ha�1 AGB for old growth miombo woodlands. In a
study covering six Southern African countries,
Tamene et al. [59], reported 119.9Mg ha�1 and
56.4Mg C ha�1. The differences in estimated AGB
and C stock is probably due to differences in eco-
logical and anthropogenic factors. Our estimates
of total biomass C storage (152.1Mg C ha�1) are
larger than those reported in other Miombo wood-
lands (e.g. Refs. [60, 61]). Our C stocks are relatively
lower than estimates from, for example, South
Africa’s Mistbelt forests (358.1Mg ha�1 and
179.0Mg C ha�1) [40], the average C density for

Africa (119Mg C ha�1 reported in Campbell et al.
[62] or estimates from tropical rainforests of Africa
(202Mg C ha�1 [63] and above 350Mg C ha�1

[12]. The results underscore the need to account
for stand characteristics and species variability in
order to accurately measure C stocks and stock
changes and comply with good practice guidance
as provided for by the IPCC [64]. A key step to
achieving this level of accuracy is to classify vege-
tation into homogeneous plant communities so as
to capture representative characteristics and traits
of vegetation befitting multi-species modelling.
The results of this study have implications for the
implementation of mechanisms such as REDDþ,
the nationally determined contribution (NDC) and
other policies for the reduction of emissions.
Zambia is a pilot country under the
REDDþ initiative, and the miombo woodland is a
target of REDDþprojects [65]. Our study provides
empirical evidence on C storage in miombo wood-
lands in Zambia and neighbouring countries.
Zambia’s NDCs includes both mitigation and adap-
tation targets. A significant portion of the
mitigation program aims to reduce emissions from
land-use, land-use change and forestry by imple-
menting forest enhancement [GRZ, [66]]. In that
endeavour, our models could be used for monitor-
ing progress in REDDþprojects and implementa-
tion of the NDC. Our estimates of C stocks may
also be used as baseline data for future carbon
management as well as monitoring progress under
the NDC of Zambia. Our C estimates also highlight
that up to 125Mg C ha�1 can be lost if a mature
miombo woodland in the study area were to be
cleared for other projects.

5. Conclusions

Using the top-ranked models, the stand-level AGB,
BGB and C stocks in miombo woodlands of
Copperbelt in Zambia are comparable to values
reported in other tropical forests of Africa. The
most important conclusion from this analysis is
that the best-model to quantify belowground bio-
mass is an allometric model using AGB alone as a
predictor variable. The analyses also demonstrated
that more accurate estimates of AGB can be found
using qD2H than all other models. The estimated
total biomass and C stock values are comparable
with values reported from other dry tropical forests
in Africa. This provides evidence of the woodland’s
potential to sequester CO2. Due to the need for
prioritising CO2 mitigation actions, it is important
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to consider the C storage potential of miombo
woodlands in conservation and landscape man-
agement planning. The results also have implica-
tions for the implementation of emission reduction
mechanisms and policies in Zambia.
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